kernel_optimize_test/drivers/clk/tegra/clk.c
Sowjanya Komatineni 68a14a5634 clk: tegra: clk-super: Fix to enable PLLP branches to CPU
This patch has a fix to enable PLLP branches to CPU before changing
the CPU cluster clock source to PLLP for Gen5 Super clock and
disables PLLP branches to CPU when not in use.

During system suspend entry and exit, CPU source will be switched
to PLLP and this needs PLLP branches to be enabled to CPU prior to
the switch.

On system resume, warmboot code enables PLLP branches to CPU and
powers up the CPU with PLLP clock source.

Acked-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Dmitry Osipenko <digetx@gmail.com>
Signed-off-by: Sowjanya Komatineni <skomatineni@nvidia.com>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2019-11-11 14:53:03 +01:00

375 lines
8.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/clkdev.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clk/tegra.h>
#include <linux/reset-controller.h>
#include <soc/tegra/fuse.h>
#include "clk.h"
#define CLK_OUT_ENB_L 0x010
#define CLK_OUT_ENB_H 0x014
#define CLK_OUT_ENB_U 0x018
#define CLK_OUT_ENB_V 0x360
#define CLK_OUT_ENB_W 0x364
#define CLK_OUT_ENB_X 0x280
#define CLK_OUT_ENB_Y 0x298
#define CLK_ENB_PLLP_OUT_CPU BIT(31)
#define CLK_OUT_ENB_SET_L 0x320
#define CLK_OUT_ENB_CLR_L 0x324
#define CLK_OUT_ENB_SET_H 0x328
#define CLK_OUT_ENB_CLR_H 0x32c
#define CLK_OUT_ENB_SET_U 0x330
#define CLK_OUT_ENB_CLR_U 0x334
#define CLK_OUT_ENB_SET_V 0x440
#define CLK_OUT_ENB_CLR_V 0x444
#define CLK_OUT_ENB_SET_W 0x448
#define CLK_OUT_ENB_CLR_W 0x44c
#define CLK_OUT_ENB_SET_X 0x284
#define CLK_OUT_ENB_CLR_X 0x288
#define CLK_OUT_ENB_SET_Y 0x29c
#define CLK_OUT_ENB_CLR_Y 0x2a0
#define RST_DEVICES_L 0x004
#define RST_DEVICES_H 0x008
#define RST_DEVICES_U 0x00C
#define RST_DEVICES_V 0x358
#define RST_DEVICES_W 0x35C
#define RST_DEVICES_X 0x28C
#define RST_DEVICES_Y 0x2a4
#define RST_DEVICES_SET_L 0x300
#define RST_DEVICES_CLR_L 0x304
#define RST_DEVICES_SET_H 0x308
#define RST_DEVICES_CLR_H 0x30c
#define RST_DEVICES_SET_U 0x310
#define RST_DEVICES_CLR_U 0x314
#define RST_DEVICES_SET_V 0x430
#define RST_DEVICES_CLR_V 0x434
#define RST_DEVICES_SET_W 0x438
#define RST_DEVICES_CLR_W 0x43c
#define RST_DEVICES_SET_X 0x290
#define RST_DEVICES_CLR_X 0x294
#define RST_DEVICES_SET_Y 0x2a8
#define RST_DEVICES_CLR_Y 0x2ac
/* Global data of Tegra CPU CAR ops */
static struct tegra_cpu_car_ops dummy_car_ops;
struct tegra_cpu_car_ops *tegra_cpu_car_ops = &dummy_car_ops;
int *periph_clk_enb_refcnt;
static int periph_banks;
static struct clk **clks;
static int clk_num;
static struct clk_onecell_data clk_data;
/* Handlers for SoC-specific reset lines */
static int (*special_reset_assert)(unsigned long);
static int (*special_reset_deassert)(unsigned long);
static unsigned int num_special_reset;
static const struct tegra_clk_periph_regs periph_regs[] = {
[0] = {
.enb_reg = CLK_OUT_ENB_L,
.enb_set_reg = CLK_OUT_ENB_SET_L,
.enb_clr_reg = CLK_OUT_ENB_CLR_L,
.rst_reg = RST_DEVICES_L,
.rst_set_reg = RST_DEVICES_SET_L,
.rst_clr_reg = RST_DEVICES_CLR_L,
},
[1] = {
.enb_reg = CLK_OUT_ENB_H,
.enb_set_reg = CLK_OUT_ENB_SET_H,
.enb_clr_reg = CLK_OUT_ENB_CLR_H,
.rst_reg = RST_DEVICES_H,
.rst_set_reg = RST_DEVICES_SET_H,
.rst_clr_reg = RST_DEVICES_CLR_H,
},
[2] = {
.enb_reg = CLK_OUT_ENB_U,
.enb_set_reg = CLK_OUT_ENB_SET_U,
.enb_clr_reg = CLK_OUT_ENB_CLR_U,
.rst_reg = RST_DEVICES_U,
.rst_set_reg = RST_DEVICES_SET_U,
.rst_clr_reg = RST_DEVICES_CLR_U,
},
[3] = {
.enb_reg = CLK_OUT_ENB_V,
.enb_set_reg = CLK_OUT_ENB_SET_V,
.enb_clr_reg = CLK_OUT_ENB_CLR_V,
.rst_reg = RST_DEVICES_V,
.rst_set_reg = RST_DEVICES_SET_V,
.rst_clr_reg = RST_DEVICES_CLR_V,
},
[4] = {
.enb_reg = CLK_OUT_ENB_W,
.enb_set_reg = CLK_OUT_ENB_SET_W,
.enb_clr_reg = CLK_OUT_ENB_CLR_W,
.rst_reg = RST_DEVICES_W,
.rst_set_reg = RST_DEVICES_SET_W,
.rst_clr_reg = RST_DEVICES_CLR_W,
},
[5] = {
.enb_reg = CLK_OUT_ENB_X,
.enb_set_reg = CLK_OUT_ENB_SET_X,
.enb_clr_reg = CLK_OUT_ENB_CLR_X,
.rst_reg = RST_DEVICES_X,
.rst_set_reg = RST_DEVICES_SET_X,
.rst_clr_reg = RST_DEVICES_CLR_X,
},
[6] = {
.enb_reg = CLK_OUT_ENB_Y,
.enb_set_reg = CLK_OUT_ENB_SET_Y,
.enb_clr_reg = CLK_OUT_ENB_CLR_Y,
.rst_reg = RST_DEVICES_Y,
.rst_set_reg = RST_DEVICES_SET_Y,
.rst_clr_reg = RST_DEVICES_CLR_Y,
},
};
static void __iomem *clk_base;
static int tegra_clk_rst_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
/*
* If peripheral is on the APB bus then we must read the APB bus to
* flush the write operation in apb bus. This will avoid peripheral
* access after disabling clock. Since the reset driver has no
* knowledge of which reset IDs represent which devices, simply do
* this all the time.
*/
tegra_read_chipid();
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_set_reg);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_assert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
if (id < periph_banks * 32) {
writel_relaxed(BIT(id % 32),
clk_base + periph_regs[id / 32].rst_clr_reg);
return 0;
} else if (id < periph_banks * 32 + num_special_reset) {
return special_reset_deassert(id);
}
return -EINVAL;
}
static int tegra_clk_rst_reset(struct reset_controller_dev *rcdev,
unsigned long id)
{
int err;
err = tegra_clk_rst_assert(rcdev, id);
if (err)
return err;
udelay(1);
return tegra_clk_rst_deassert(rcdev, id);
}
const struct tegra_clk_periph_regs *get_reg_bank(int clkid)
{
int reg_bank = clkid / 32;
if (reg_bank < periph_banks)
return &periph_regs[reg_bank];
else {
WARN_ON(1);
return NULL;
}
}
void tegra_clk_set_pllp_out_cpu(bool enable)
{
u32 val;
val = readl_relaxed(clk_base + CLK_OUT_ENB_Y);
if (enable)
val |= CLK_ENB_PLLP_OUT_CPU;
else
val &= ~CLK_ENB_PLLP_OUT_CPU;
writel_relaxed(val, clk_base + CLK_OUT_ENB_Y);
}
struct clk ** __init tegra_clk_init(void __iomem *regs, int num, int banks)
{
clk_base = regs;
if (WARN_ON(banks > ARRAY_SIZE(periph_regs)))
return NULL;
periph_clk_enb_refcnt = kcalloc(32 * banks,
sizeof(*periph_clk_enb_refcnt),
GFP_KERNEL);
if (!periph_clk_enb_refcnt)
return NULL;
periph_banks = banks;
clks = kcalloc(num, sizeof(struct clk *), GFP_KERNEL);
if (!clks)
kfree(periph_clk_enb_refcnt);
clk_num = num;
return clks;
}
void __init tegra_init_dup_clks(struct tegra_clk_duplicate *dup_list,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; dup_list->clk_id < clk_max; dup_list++) {
clk = clks[dup_list->clk_id];
dup_list->lookup.clk = clk;
clkdev_add(&dup_list->lookup);
}
}
void __init tegra_init_from_table(struct tegra_clk_init_table *tbl,
struct clk *clks[], int clk_max)
{
struct clk *clk;
for (; tbl->clk_id < clk_max; tbl++) {
clk = clks[tbl->clk_id];
if (IS_ERR_OR_NULL(clk)) {
pr_err("%s: invalid entry %ld in clks array for id %d\n",
__func__, PTR_ERR(clk), tbl->clk_id);
WARN_ON(1);
continue;
}
if (tbl->parent_id < clk_max) {
struct clk *parent = clks[tbl->parent_id];
if (clk_set_parent(clk, parent)) {
pr_err("%s: Failed to set parent %s of %s\n",
__func__, __clk_get_name(parent),
__clk_get_name(clk));
WARN_ON(1);
}
}
if (tbl->rate)
if (clk_set_rate(clk, tbl->rate)) {
pr_err("%s: Failed to set rate %lu of %s\n",
__func__, tbl->rate,
__clk_get_name(clk));
WARN_ON(1);
}
if (tbl->state)
if (clk_prepare_enable(clk)) {
pr_err("%s: Failed to enable %s\n", __func__,
__clk_get_name(clk));
WARN_ON(1);
}
}
}
static const struct reset_control_ops rst_ops = {
.assert = tegra_clk_rst_assert,
.deassert = tegra_clk_rst_deassert,
.reset = tegra_clk_rst_reset,
};
static struct reset_controller_dev rst_ctlr = {
.ops = &rst_ops,
.owner = THIS_MODULE,
.of_reset_n_cells = 1,
};
void __init tegra_add_of_provider(struct device_node *np,
void *clk_src_onecell_get)
{
int i;
for (i = 0; i < clk_num; i++) {
if (IS_ERR(clks[i])) {
pr_err
("Tegra clk %d: register failed with %ld\n",
i, PTR_ERR(clks[i]));
}
if (!clks[i])
clks[i] = ERR_PTR(-EINVAL);
}
clk_data.clks = clks;
clk_data.clk_num = clk_num;
of_clk_add_provider(np, clk_src_onecell_get, &clk_data);
rst_ctlr.of_node = np;
rst_ctlr.nr_resets = periph_banks * 32 + num_special_reset;
reset_controller_register(&rst_ctlr);
}
void __init tegra_init_special_resets(unsigned int num,
int (*assert)(unsigned long),
int (*deassert)(unsigned long))
{
num_special_reset = num;
special_reset_assert = assert;
special_reset_deassert = deassert;
}
void __init tegra_register_devclks(struct tegra_devclk *dev_clks, int num)
{
int i;
for (i = 0; i < num; i++, dev_clks++)
clk_register_clkdev(clks[dev_clks->dt_id], dev_clks->con_id,
dev_clks->dev_id);
for (i = 0; i < clk_num; i++) {
if (!IS_ERR_OR_NULL(clks[i]))
clk_register_clkdev(clks[i], __clk_get_name(clks[i]),
"tegra-clk-debug");
}
}
struct clk ** __init tegra_lookup_dt_id(int clk_id,
struct tegra_clk *tegra_clk)
{
if (tegra_clk[clk_id].present)
return &clks[tegra_clk[clk_id].dt_id];
else
return NULL;
}
tegra_clk_apply_init_table_func tegra_clk_apply_init_table;
static int __init tegra_clocks_apply_init_table(void)
{
if (!tegra_clk_apply_init_table)
return 0;
tegra_clk_apply_init_table();
return 0;
}
arch_initcall(tegra_clocks_apply_init_table);