kernel_optimize_test/fs/ocfs2/alloc.c
Mark Fasheh 1ca1a111b1 ocfs2: fix sparse warnings in fs/ocfs2
None of these are actually harmful, but the noise makes looking for real
problems difficult.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
2007-05-02 15:08:08 -07:00

3899 lines
97 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* alloc.c
*
* Extent allocs and frees
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/swap.h>
#define MLOG_MASK_PREFIX ML_DISK_ALLOC
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "suballoc.h"
#include "sysfile.h"
#include "file.h"
#include "super.h"
#include "uptodate.h"
#include "buffer_head_io.h"
static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
/*
* Structures which describe a path through a btree, and functions to
* manipulate them.
*
* The idea here is to be as generic as possible with the tree
* manipulation code.
*/
struct ocfs2_path_item {
struct buffer_head *bh;
struct ocfs2_extent_list *el;
};
#define OCFS2_MAX_PATH_DEPTH 5
struct ocfs2_path {
int p_tree_depth;
struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
};
#define path_root_bh(_path) ((_path)->p_node[0].bh)
#define path_root_el(_path) ((_path)->p_node[0].el)
#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
#define path_num_items(_path) ((_path)->p_tree_depth + 1)
/*
* Reset the actual path elements so that we can re-use the structure
* to build another path. Generally, this involves freeing the buffer
* heads.
*/
static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
{
int i, start = 0, depth = 0;
struct ocfs2_path_item *node;
if (keep_root)
start = 1;
for(i = start; i < path_num_items(path); i++) {
node = &path->p_node[i];
brelse(node->bh);
node->bh = NULL;
node->el = NULL;
}
/*
* Tree depth may change during truncate, or insert. If we're
* keeping the root extent list, then make sure that our path
* structure reflects the proper depth.
*/
if (keep_root)
depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
path->p_tree_depth = depth;
}
static void ocfs2_free_path(struct ocfs2_path *path)
{
if (path) {
ocfs2_reinit_path(path, 0);
kfree(path);
}
}
/*
* Make the *dest path the same as src and re-initialize src path to
* have a root only.
*/
static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
{
int i;
BUG_ON(path_root_bh(dest) != path_root_bh(src));
for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
brelse(dest->p_node[i].bh);
dest->p_node[i].bh = src->p_node[i].bh;
dest->p_node[i].el = src->p_node[i].el;
src->p_node[i].bh = NULL;
src->p_node[i].el = NULL;
}
}
/*
* Insert an extent block at given index.
*
* This will not take an additional reference on eb_bh.
*/
static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
struct buffer_head *eb_bh)
{
struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
/*
* Right now, no root bh is an extent block, so this helps
* catch code errors with dinode trees. The assertion can be
* safely removed if we ever need to insert extent block
* structures at the root.
*/
BUG_ON(index == 0);
path->p_node[index].bh = eb_bh;
path->p_node[index].el = &eb->h_list;
}
static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
struct ocfs2_extent_list *root_el)
{
struct ocfs2_path *path;
BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
path = kzalloc(sizeof(*path), GFP_NOFS);
if (path) {
path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
get_bh(root_bh);
path_root_bh(path) = root_bh;
path_root_el(path) = root_el;
}
return path;
}
/*
* Allocate and initialize a new path based on a disk inode tree.
*/
static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_extent_list *el = &di->id2.i_list;
return ocfs2_new_path(di_bh, el);
}
/*
* Convenience function to journal all components in a path.
*/
static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
struct ocfs2_path *path)
{
int i, ret = 0;
if (!path)
goto out;
for(i = 0; i < path_num_items(path); i++) {
ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
out:
return ret;
}
enum ocfs2_contig_type {
CONTIG_NONE = 0,
CONTIG_LEFT,
CONTIG_RIGHT
};
/*
* NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
* ocfs2_extent_contig only work properly against leaf nodes!
*/
static int ocfs2_block_extent_contig(struct super_block *sb,
struct ocfs2_extent_rec *ext,
u64 blkno)
{
u64 blk_end = le64_to_cpu(ext->e_blkno);
blk_end += ocfs2_clusters_to_blocks(sb,
le16_to_cpu(ext->e_leaf_clusters));
return blkno == blk_end;
}
static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
struct ocfs2_extent_rec *right)
{
u32 left_range;
left_range = le32_to_cpu(left->e_cpos) +
le16_to_cpu(left->e_leaf_clusters);
return (left_range == le32_to_cpu(right->e_cpos));
}
static enum ocfs2_contig_type
ocfs2_extent_contig(struct inode *inode,
struct ocfs2_extent_rec *ext,
struct ocfs2_extent_rec *insert_rec)
{
u64 blkno = le64_to_cpu(insert_rec->e_blkno);
if (ocfs2_extents_adjacent(ext, insert_rec) &&
ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
return CONTIG_RIGHT;
blkno = le64_to_cpu(ext->e_blkno);
if (ocfs2_extents_adjacent(insert_rec, ext) &&
ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
return CONTIG_LEFT;
return CONTIG_NONE;
}
/*
* NOTE: We can have pretty much any combination of contiguousness and
* appending.
*
* The usefulness of APPEND_TAIL is more in that it lets us know that
* we'll have to update the path to that leaf.
*/
enum ocfs2_append_type {
APPEND_NONE = 0,
APPEND_TAIL,
};
struct ocfs2_insert_type {
enum ocfs2_append_type ins_appending;
enum ocfs2_contig_type ins_contig;
int ins_contig_index;
int ins_free_records;
int ins_tree_depth;
};
/*
* How many free extents have we got before we need more meta data?
*/
int ocfs2_num_free_extents(struct ocfs2_super *osb,
struct inode *inode,
struct ocfs2_dinode *fe)
{
int retval;
struct ocfs2_extent_list *el;
struct ocfs2_extent_block *eb;
struct buffer_head *eb_bh = NULL;
mlog_entry_void();
if (!OCFS2_IS_VALID_DINODE(fe)) {
OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
retval = -EIO;
goto bail;
}
if (fe->i_last_eb_blk) {
retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
&eb_bh, OCFS2_BH_CACHED, inode);
if (retval < 0) {
mlog_errno(retval);
goto bail;
}
eb = (struct ocfs2_extent_block *) eb_bh->b_data;
el = &eb->h_list;
} else
el = &fe->id2.i_list;
BUG_ON(el->l_tree_depth != 0);
retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
bail:
if (eb_bh)
brelse(eb_bh);
mlog_exit(retval);
return retval;
}
/* expects array to already be allocated
*
* sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
* l_count for you
*/
static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
int wanted,
struct ocfs2_alloc_context *meta_ac,
struct buffer_head *bhs[])
{
int count, status, i;
u16 suballoc_bit_start;
u32 num_got;
u64 first_blkno;
struct ocfs2_extent_block *eb;
mlog_entry_void();
count = 0;
while (count < wanted) {
status = ocfs2_claim_metadata(osb,
handle,
meta_ac,
wanted - count,
&suballoc_bit_start,
&num_got,
&first_blkno);
if (status < 0) {
mlog_errno(status);
goto bail;
}
for(i = count; i < (num_got + count); i++) {
bhs[i] = sb_getblk(osb->sb, first_blkno);
if (bhs[i] == NULL) {
status = -EIO;
mlog_errno(status);
goto bail;
}
ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
status = ocfs2_journal_access(handle, inode, bhs[i],
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
/* Ok, setup the minimal stuff here. */
strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
eb->h_blkno = cpu_to_le64(first_blkno);
eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
#ifndef OCFS2_USE_ALL_METADATA_SUBALLOCATORS
/* we always use slot zero's suballocator */
eb->h_suballoc_slot = 0;
#else
eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
#endif
eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
eb->h_list.l_count =
cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
suballoc_bit_start++;
first_blkno++;
/* We'll also be dirtied by the caller, so
* this isn't absolutely necessary. */
status = ocfs2_journal_dirty(handle, bhs[i]);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
count += num_got;
}
status = 0;
bail:
if (status < 0) {
for(i = 0; i < wanted; i++) {
if (bhs[i])
brelse(bhs[i]);
bhs[i] = NULL;
}
}
mlog_exit(status);
return status;
}
/*
* Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
*
* Returns the sum of the rightmost extent rec logical offset and
* cluster count.
*
* ocfs2_add_branch() uses this to determine what logical cluster
* value should be populated into the leftmost new branch records.
*
* ocfs2_shift_tree_depth() uses this to determine the # clusters
* value for the new topmost tree record.
*/
static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
{
int i;
i = le16_to_cpu(el->l_next_free_rec) - 1;
return le32_to_cpu(el->l_recs[i].e_cpos) +
ocfs2_rec_clusters(el, &el->l_recs[i]);
}
/*
* Add an entire tree branch to our inode. eb_bh is the extent block
* to start at, if we don't want to start the branch at the dinode
* structure.
*
* last_eb_bh is required as we have to update it's next_leaf pointer
* for the new last extent block.
*
* the new branch will be 'empty' in the sense that every block will
* contain a single record with cluster count == 0.
*/
static int ocfs2_add_branch(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
struct buffer_head *eb_bh,
struct buffer_head *last_eb_bh,
struct ocfs2_alloc_context *meta_ac)
{
int status, new_blocks, i;
u64 next_blkno, new_last_eb_blk;
struct buffer_head *bh;
struct buffer_head **new_eb_bhs = NULL;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *eb_el;
struct ocfs2_extent_list *el;
u32 new_cpos;
mlog_entry_void();
BUG_ON(!last_eb_bh);
fe = (struct ocfs2_dinode *) fe_bh->b_data;
if (eb_bh) {
eb = (struct ocfs2_extent_block *) eb_bh->b_data;
el = &eb->h_list;
} else
el = &fe->id2.i_list;
/* we never add a branch to a leaf. */
BUG_ON(!el->l_tree_depth);
new_blocks = le16_to_cpu(el->l_tree_depth);
/* allocate the number of new eb blocks we need */
new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
GFP_KERNEL);
if (!new_eb_bhs) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
meta_ac, new_eb_bhs);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *)last_eb_bh->b_data;
new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
* linked with the rest of the tree.
* conversly, new_eb_bhs[0] is the new bottommost leaf.
*
* when we leave the loop, new_last_eb_blk will point to the
* newest leaf, and next_blkno will point to the topmost extent
* block. */
next_blkno = new_last_eb_blk = 0;
for(i = 0; i < new_blocks; i++) {
bh = new_eb_bhs[i];
eb = (struct ocfs2_extent_block *) bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
eb_el = &eb->h_list;
status = ocfs2_journal_access(handle, inode, bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb->h_next_leaf_blk = 0;
eb_el->l_tree_depth = cpu_to_le16(i);
eb_el->l_next_free_rec = cpu_to_le16(1);
/*
* This actually counts as an empty extent as
* c_clusters == 0
*/
eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
/*
* eb_el isn't always an interior node, but even leaf
* nodes want a zero'd flags and reserved field so
* this gets the whole 32 bits regardless of use.
*/
eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
if (!eb_el->l_tree_depth)
new_last_eb_blk = le64_to_cpu(eb->h_blkno);
status = ocfs2_journal_dirty(handle, bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
next_blkno = le64_to_cpu(eb->h_blkno);
}
/* This is a bit hairy. We want to update up to three blocks
* here without leaving any of them in an inconsistent state
* in case of error. We don't have to worry about
* journal_dirty erroring as it won't unless we've aborted the
* handle (in which case we would never be here) so reserving
* the write with journal_access is all we need to do. */
status = ocfs2_journal_access(handle, inode, last_eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, inode, fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (eb_bh) {
status = ocfs2_journal_access(handle, inode, eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
/* Link the new branch into the rest of the tree (el will
* either be on the fe, or the extent block passed in. */
i = le16_to_cpu(el->l_next_free_rec);
el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
el->l_recs[i].e_int_clusters = 0;
le16_add_cpu(&el->l_next_free_rec, 1);
/* fe needs a new last extent block pointer, as does the
* next_leaf on the previously last-extent-block. */
fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
status = ocfs2_journal_dirty(handle, last_eb_bh);
if (status < 0)
mlog_errno(status);
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0)
mlog_errno(status);
if (eb_bh) {
status = ocfs2_journal_dirty(handle, eb_bh);
if (status < 0)
mlog_errno(status);
}
status = 0;
bail:
if (new_eb_bhs) {
for (i = 0; i < new_blocks; i++)
if (new_eb_bhs[i])
brelse(new_eb_bhs[i]);
kfree(new_eb_bhs);
}
mlog_exit(status);
return status;
}
/*
* adds another level to the allocation tree.
* returns back the new extent block so you can add a branch to it
* after this call.
*/
static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_alloc_context *meta_ac,
struct buffer_head **ret_new_eb_bh)
{
int status, i;
u32 new_clusters;
struct buffer_head *new_eb_bh = NULL;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *fe_el;
struct ocfs2_extent_list *eb_el;
mlog_entry_void();
status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
&new_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
eb_el = &eb->h_list;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
fe_el = &fe->id2.i_list;
status = ocfs2_journal_access(handle, inode, new_eb_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/* copy the fe data into the new extent block */
eb_el->l_tree_depth = fe_el->l_tree_depth;
eb_el->l_next_free_rec = fe_el->l_next_free_rec;
for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
eb_el->l_recs[i] = fe_el->l_recs[i];
status = ocfs2_journal_dirty(handle, new_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, inode, fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
new_clusters = ocfs2_sum_rightmost_rec(eb_el);
/* update fe now */
le16_add_cpu(&fe_el->l_tree_depth, 1);
fe_el->l_recs[0].e_cpos = 0;
fe_el->l_recs[0].e_blkno = eb->h_blkno;
fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
fe_el->l_next_free_rec = cpu_to_le16(1);
/* If this is our 1st tree depth shift, then last_eb_blk
* becomes the allocated extent block */
if (fe_el->l_tree_depth == cpu_to_le16(1))
fe->i_last_eb_blk = eb->h_blkno;
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
*ret_new_eb_bh = new_eb_bh;
new_eb_bh = NULL;
status = 0;
bail:
if (new_eb_bh)
brelse(new_eb_bh);
mlog_exit(status);
return status;
}
/*
* Should only be called when there is no space left in any of the
* leaf nodes. What we want to do is find the lowest tree depth
* non-leaf extent block with room for new records. There are three
* valid results of this search:
*
* 1) a lowest extent block is found, then we pass it back in
* *lowest_eb_bh and return '0'
*
* 2) the search fails to find anything, but the dinode has room. We
* pass NULL back in *lowest_eb_bh, but still return '0'
*
* 3) the search fails to find anything AND the dinode is full, in
* which case we return > 0
*
* return status < 0 indicates an error.
*/
static int ocfs2_find_branch_target(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct buffer_head **target_bh)
{
int status = 0, i;
u64 blkno;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *bh = NULL;
struct buffer_head *lowest_bh = NULL;
mlog_entry_void();
*target_bh = NULL;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
el = &fe->id2.i_list;
while(le16_to_cpu(el->l_tree_depth) > 1) {
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb, "Dinode %llu has empty "
"extent list (next_free_rec == 0)",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
status = -EIO;
goto bail;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
blkno = le64_to_cpu(el->l_recs[i].e_blkno);
if (!blkno) {
ocfs2_error(inode->i_sb, "Dinode %llu has extent "
"list where extent # %d has no physical "
"block start",
(unsigned long long)OCFS2_I(inode)->ip_blkno, i);
status = -EIO;
goto bail;
}
if (bh) {
brelse(bh);
bh = NULL;
}
status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
el = &eb->h_list;
if (le16_to_cpu(el->l_next_free_rec) <
le16_to_cpu(el->l_count)) {
if (lowest_bh)
brelse(lowest_bh);
lowest_bh = bh;
get_bh(lowest_bh);
}
}
/* If we didn't find one and the fe doesn't have any room,
* then return '1' */
if (!lowest_bh
&& (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
status = 1;
*target_bh = lowest_bh;
bail:
if (bh)
brelse(bh);
mlog_exit(status);
return status;
}
/*
* This is only valid for leaf nodes, which are the only ones that can
* have empty extents anyway.
*/
static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
{
return !rec->e_leaf_clusters;
}
/*
* This function will discard the rightmost extent record.
*/
static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
{
int next_free = le16_to_cpu(el->l_next_free_rec);
int count = le16_to_cpu(el->l_count);
unsigned int num_bytes;
BUG_ON(!next_free);
/* This will cause us to go off the end of our extent list. */
BUG_ON(next_free >= count);
num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
}
static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i, insert_index, next_free, has_empty, num_bytes;
u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
struct ocfs2_extent_rec *rec;
next_free = le16_to_cpu(el->l_next_free_rec);
has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
BUG_ON(!next_free);
/* The tree code before us didn't allow enough room in the leaf. */
if (el->l_next_free_rec == el->l_count && !has_empty)
BUG();
/*
* The easiest way to approach this is to just remove the
* empty extent and temporarily decrement next_free.
*/
if (has_empty) {
/*
* If next_free was 1 (only an empty extent), this
* loop won't execute, which is fine. We still want
* the decrement above to happen.
*/
for(i = 0; i < (next_free - 1); i++)
el->l_recs[i] = el->l_recs[i+1];
next_free--;
}
/*
* Figure out what the new record index should be.
*/
for(i = 0; i < next_free; i++) {
rec = &el->l_recs[i];
if (insert_cpos < le32_to_cpu(rec->e_cpos))
break;
}
insert_index = i;
mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
BUG_ON(insert_index < 0);
BUG_ON(insert_index >= le16_to_cpu(el->l_count));
BUG_ON(insert_index > next_free);
/*
* No need to memmove if we're just adding to the tail.
*/
if (insert_index != next_free) {
BUG_ON(next_free >= le16_to_cpu(el->l_count));
num_bytes = next_free - insert_index;
num_bytes *= sizeof(struct ocfs2_extent_rec);
memmove(&el->l_recs[insert_index + 1],
&el->l_recs[insert_index],
num_bytes);
}
/*
* Either we had an empty extent, and need to re-increment or
* there was no empty extent on a non full rightmost leaf node,
* in which case we still need to increment.
*/
next_free++;
el->l_next_free_rec = cpu_to_le16(next_free);
/*
* Make sure none of the math above just messed up our tree.
*/
BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
el->l_recs[insert_index] = *insert_rec;
}
/*
* Create an empty extent record .
*
* l_next_free_rec may be updated.
*
* If an empty extent already exists do nothing.
*/
static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
{
int next_free = le16_to_cpu(el->l_next_free_rec);
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
if (next_free == 0)
goto set_and_inc;
if (ocfs2_is_empty_extent(&el->l_recs[0]))
return;
mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
"Asked to create an empty extent in a full list:\n"
"count = %u, tree depth = %u",
le16_to_cpu(el->l_count),
le16_to_cpu(el->l_tree_depth));
ocfs2_shift_records_right(el);
set_and_inc:
le16_add_cpu(&el->l_next_free_rec, 1);
memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
}
/*
* For a rotation which involves two leaf nodes, the "root node" is
* the lowest level tree node which contains a path to both leafs. This
* resulting set of information can be used to form a complete "subtree"
*
* This function is passed two full paths from the dinode down to a
* pair of adjacent leaves. It's task is to figure out which path
* index contains the subtree root - this can be the root index itself
* in a worst-case rotation.
*
* The array index of the subtree root is passed back.
*/
static int ocfs2_find_subtree_root(struct inode *inode,
struct ocfs2_path *left,
struct ocfs2_path *right)
{
int i = 0;
/*
* Check that the caller passed in two paths from the same tree.
*/
BUG_ON(path_root_bh(left) != path_root_bh(right));
do {
i++;
/*
* The caller didn't pass two adjacent paths.
*/
mlog_bug_on_msg(i > left->p_tree_depth,
"Inode %lu, left depth %u, right depth %u\n"
"left leaf blk %llu, right leaf blk %llu\n",
inode->i_ino, left->p_tree_depth,
right->p_tree_depth,
(unsigned long long)path_leaf_bh(left)->b_blocknr,
(unsigned long long)path_leaf_bh(right)->b_blocknr);
} while (left->p_node[i].bh->b_blocknr ==
right->p_node[i].bh->b_blocknr);
return i - 1;
}
typedef void (path_insert_t)(void *, struct buffer_head *);
/*
* Traverse a btree path in search of cpos, starting at root_el.
*
* This code can be called with a cpos larger than the tree, in which
* case it will return the rightmost path.
*/
static int __ocfs2_find_path(struct inode *inode,
struct ocfs2_extent_list *root_el, u32 cpos,
path_insert_t *func, void *data)
{
int i, ret = 0;
u32 range;
u64 blkno;
struct buffer_head *bh = NULL;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
el = root_el;
while (el->l_tree_depth) {
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has empty extent list at "
"depth %u\n",
(unsigned long long)oi->ip_blkno,
le16_to_cpu(el->l_tree_depth));
ret = -EROFS;
goto out;
}
for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
rec = &el->l_recs[i];
/*
* In the case that cpos is off the allocation
* tree, this should just wind up returning the
* rightmost record.
*/
range = le32_to_cpu(rec->e_cpos) +
ocfs2_rec_clusters(el, rec);
if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
break;
}
blkno = le64_to_cpu(el->l_recs[i].e_blkno);
if (blkno == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has bad blkno in extent list "
"at depth %u (index %d)\n",
(unsigned long long)oi->ip_blkno,
le16_to_cpu(el->l_tree_depth), i);
ret = -EROFS;
goto out;
}
brelse(bh);
bh = NULL;
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
&bh, OCFS2_BH_CACHED, inode);
if (ret) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
ret = -EIO;
goto out;
}
if (le16_to_cpu(el->l_next_free_rec) >
le16_to_cpu(el->l_count)) {
ocfs2_error(inode->i_sb,
"Inode %llu has bad count in extent list "
"at block %llu (next free=%u, count=%u)\n",
(unsigned long long)oi->ip_blkno,
(unsigned long long)bh->b_blocknr,
le16_to_cpu(el->l_next_free_rec),
le16_to_cpu(el->l_count));
ret = -EROFS;
goto out;
}
if (func)
func(data, bh);
}
out:
/*
* Catch any trailing bh that the loop didn't handle.
*/
brelse(bh);
return ret;
}
/*
* Given an initialized path (that is, it has a valid root extent
* list), this function will traverse the btree in search of the path
* which would contain cpos.
*
* The path traveled is recorded in the path structure.
*
* Note that this will not do any comparisons on leaf node extent
* records, so it will work fine in the case that we just added a tree
* branch.
*/
struct find_path_data {
int index;
struct ocfs2_path *path;
};
static void find_path_ins(void *data, struct buffer_head *bh)
{
struct find_path_data *fp = data;
get_bh(bh);
ocfs2_path_insert_eb(fp->path, fp->index, bh);
fp->index++;
}
static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
u32 cpos)
{
struct find_path_data data;
data.index = 1;
data.path = path;
return __ocfs2_find_path(inode, path_root_el(path), cpos,
find_path_ins, &data);
}
static void find_leaf_ins(void *data, struct buffer_head *bh)
{
struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
struct ocfs2_extent_list *el = &eb->h_list;
struct buffer_head **ret = data;
/* We want to retain only the leaf block. */
if (le16_to_cpu(el->l_tree_depth) == 0) {
get_bh(bh);
*ret = bh;
}
}
/*
* Find the leaf block in the tree which would contain cpos. No
* checking of the actual leaf is done.
*
* Some paths want to call this instead of allocating a path structure
* and calling ocfs2_find_path().
*
* This function doesn't handle non btree extent lists.
*/
int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
u32 cpos, struct buffer_head **leaf_bh)
{
int ret;
struct buffer_head *bh = NULL;
ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
if (ret) {
mlog_errno(ret);
goto out;
}
*leaf_bh = bh;
out:
return ret;
}
/*
* Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
*
* Basically, we've moved stuff around at the bottom of the tree and
* we need to fix up the extent records above the changes to reflect
* the new changes.
*
* left_rec: the record on the left.
* left_child_el: is the child list pointed to by left_rec
* right_rec: the record to the right of left_rec
* right_child_el: is the child list pointed to by right_rec
*
* By definition, this only works on interior nodes.
*/
static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
struct ocfs2_extent_list *left_child_el,
struct ocfs2_extent_rec *right_rec,
struct ocfs2_extent_list *right_child_el)
{
u32 left_clusters, right_end;
/*
* Interior nodes never have holes. Their cpos is the cpos of
* the leftmost record in their child list. Their cluster
* count covers the full theoretical range of their child list
* - the range between their cpos and the cpos of the record
* immediately to their right.
*/
left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
left_clusters -= le32_to_cpu(left_rec->e_cpos);
left_rec->e_int_clusters = cpu_to_le32(left_clusters);
/*
* Calculate the rightmost cluster count boundary before
* moving cpos - we will need to adjust clusters after
* updating e_cpos to keep the same highest cluster count.
*/
right_end = le32_to_cpu(right_rec->e_cpos);
right_end += le32_to_cpu(right_rec->e_int_clusters);
right_rec->e_cpos = left_rec->e_cpos;
le32_add_cpu(&right_rec->e_cpos, left_clusters);
right_end -= le32_to_cpu(right_rec->e_cpos);
right_rec->e_int_clusters = cpu_to_le32(right_end);
}
/*
* Adjust the adjacent root node records involved in a
* rotation. left_el_blkno is passed in as a key so that we can easily
* find it's index in the root list.
*/
static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
struct ocfs2_extent_list *left_el,
struct ocfs2_extent_list *right_el,
u64 left_el_blkno)
{
int i;
BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
le16_to_cpu(left_el->l_tree_depth));
for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
break;
}
/*
* The path walking code should have never returned a root and
* two paths which are not adjacent.
*/
BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
&root_el->l_recs[i + 1], right_el);
}
/*
* We've changed a leaf block (in right_path) and need to reflect that
* change back up the subtree.
*
* This happens in multiple places:
* - When we've moved an extent record from the left path leaf to the right
* path leaf to make room for an empty extent in the left path leaf.
* - When our insert into the right path leaf is at the leftmost edge
* and requires an update of the path immediately to it's left. This
* can occur at the end of some types of rotation and appending inserts.
*/
static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index)
{
int ret, i, idx;
struct ocfs2_extent_list *el, *left_el, *right_el;
struct ocfs2_extent_rec *left_rec, *right_rec;
struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
/*
* Update the counts and position values within all the
* interior nodes to reflect the leaf rotation we just did.
*
* The root node is handled below the loop.
*
* We begin the loop with right_el and left_el pointing to the
* leaf lists and work our way up.
*
* NOTE: within this loop, left_el and right_el always refer
* to the *child* lists.
*/
left_el = path_leaf_el(left_path);
right_el = path_leaf_el(right_path);
for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
mlog(0, "Adjust records at index %u\n", i);
/*
* One nice property of knowing that all of these
* nodes are below the root is that we only deal with
* the leftmost right node record and the rightmost
* left node record.
*/
el = left_path->p_node[i].el;
idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
left_rec = &el->l_recs[idx];
el = right_path->p_node[i].el;
right_rec = &el->l_recs[0];
ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
right_el);
ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
if (ret)
mlog_errno(ret);
ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
if (ret)
mlog_errno(ret);
/*
* Setup our list pointers now so that the current
* parents become children in the next iteration.
*/
left_el = left_path->p_node[i].el;
right_el = right_path->p_node[i].el;
}
/*
* At the root node, adjust the two adjacent records which
* begin our path to the leaves.
*/
el = left_path->p_node[subtree_index].el;
left_el = left_path->p_node[subtree_index + 1].el;
right_el = right_path->p_node[subtree_index + 1].el;
ocfs2_adjust_root_records(el, left_el, right_el,
left_path->p_node[subtree_index + 1].bh->b_blocknr);
root_bh = left_path->p_node[subtree_index].bh;
ret = ocfs2_journal_dirty(handle, root_bh);
if (ret)
mlog_errno(ret);
}
static int ocfs2_rotate_subtree_right(struct inode *inode,
handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index)
{
int ret, i;
struct buffer_head *right_leaf_bh;
struct buffer_head *left_leaf_bh = NULL;
struct buffer_head *root_bh;
struct ocfs2_extent_list *right_el, *left_el;
struct ocfs2_extent_rec move_rec;
left_leaf_bh = path_leaf_bh(left_path);
left_el = path_leaf_el(left_path);
if (left_el->l_next_free_rec != left_el->l_count) {
ocfs2_error(inode->i_sb,
"Inode %llu has non-full interior leaf node %llu"
"(next free = %u)",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)left_leaf_bh->b_blocknr,
le16_to_cpu(left_el->l_next_free_rec));
return -EROFS;
}
/*
* This extent block may already have an empty record, so we
* return early if so.
*/
if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
return 0;
root_bh = left_path->p_node[subtree_index].bh;
BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
ret = ocfs2_journal_access(handle, inode, root_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
ret = ocfs2_journal_access(handle, inode,
right_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access(handle, inode,
left_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
}
right_leaf_bh = path_leaf_bh(right_path);
right_el = path_leaf_el(right_path);
/* This is a code error, not a disk corruption. */
mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
"because rightmost leaf block %llu is empty\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)right_leaf_bh->b_blocknr);
ocfs2_create_empty_extent(right_el);
ret = ocfs2_journal_dirty(handle, right_leaf_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
/* Do the copy now. */
i = le16_to_cpu(left_el->l_next_free_rec) - 1;
move_rec = left_el->l_recs[i];
right_el->l_recs[0] = move_rec;
/*
* Clear out the record we just copied and shift everything
* over, leaving an empty extent in the left leaf.
*
* We temporarily subtract from next_free_rec so that the
* shift will lose the tail record (which is now defunct).
*/
le16_add_cpu(&left_el->l_next_free_rec, -1);
ocfs2_shift_records_right(left_el);
memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&left_el->l_next_free_rec, 1);
ret = ocfs2_journal_dirty(handle, left_leaf_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
subtree_index);
out:
return ret;
}
/*
* Given a full path, determine what cpos value would return us a path
* containing the leaf immediately to the left of the current one.
*
* Will return zero if the path passed in is already the leftmost path.
*/
static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
struct ocfs2_path *path, u32 *cpos)
{
int i, j, ret = 0;
u64 blkno;
struct ocfs2_extent_list *el;
BUG_ON(path->p_tree_depth == 0);
*cpos = 0;
blkno = path_leaf_bh(path)->b_blocknr;
/* Start at the tree node just above the leaf and work our way up. */
i = path->p_tree_depth - 1;
while (i >= 0) {
el = path->p_node[i].el;
/*
* Find the extent record just before the one in our
* path.
*/
for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
if (j == 0) {
if (i == 0) {
/*
* We've determined that the
* path specified is already
* the leftmost one - return a
* cpos of zero.
*/
goto out;
}
/*
* The leftmost record points to our
* leaf - we need to travel up the
* tree one level.
*/
goto next_node;
}
*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
*cpos = *cpos + ocfs2_rec_clusters(el,
&el->l_recs[j - 1]);
*cpos = *cpos - 1;
goto out;
}
}
/*
* If we got here, we never found a valid node where
* the tree indicated one should be.
*/
ocfs2_error(sb,
"Invalid extent tree at extent block %llu\n",
(unsigned long long)blkno);
ret = -EROFS;
goto out;
next_node:
blkno = path->p_node[i].bh->b_blocknr;
i--;
}
out:
return ret;
}
static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
struct ocfs2_path *path)
{
int credits = (path->p_tree_depth - subtree_depth) * 2 + 1;
if (handle->h_buffer_credits < credits)
return ocfs2_extend_trans(handle, credits);
return 0;
}
/*
* Trap the case where we're inserting into the theoretical range past
* the _actual_ left leaf range. Otherwise, we'll rotate a record
* whose cpos is less than ours into the right leaf.
*
* It's only necessary to look at the rightmost record of the left
* leaf because the logic that calls us should ensure that the
* theoretical ranges in the path components above the leaves are
* correct.
*/
static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
u32 insert_cpos)
{
struct ocfs2_extent_list *left_el;
struct ocfs2_extent_rec *rec;
int next_free;
left_el = path_leaf_el(left_path);
next_free = le16_to_cpu(left_el->l_next_free_rec);
rec = &left_el->l_recs[next_free - 1];
if (insert_cpos > le32_to_cpu(rec->e_cpos))
return 1;
return 0;
}
/*
* Rotate all the records in a btree right one record, starting at insert_cpos.
*
* The path to the rightmost leaf should be passed in.
*
* The array is assumed to be large enough to hold an entire path (tree depth).
*
* Upon succesful return from this function:
*
* - The 'right_path' array will contain a path to the leaf block
* whose range contains e_cpos.
* - That leaf block will have a single empty extent in list index 0.
* - In the case that the rotation requires a post-insert update,
* *ret_left_path will contain a valid path which can be passed to
* ocfs2_insert_path().
*/
static int ocfs2_rotate_tree_right(struct inode *inode,
handle_t *handle,
u32 insert_cpos,
struct ocfs2_path *right_path,
struct ocfs2_path **ret_left_path)
{
int ret, start;
u32 cpos;
struct ocfs2_path *left_path = NULL;
*ret_left_path = NULL;
left_path = ocfs2_new_path(path_root_bh(right_path),
path_root_el(right_path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
/*
* What we want to do here is:
*
* 1) Start with the rightmost path.
*
* 2) Determine a path to the leaf block directly to the left
* of that leaf.
*
* 3) Determine the 'subtree root' - the lowest level tree node
* which contains a path to both leaves.
*
* 4) Rotate the subtree.
*
* 5) Find the next subtree by considering the left path to be
* the new right path.
*
* The check at the top of this while loop also accepts
* insert_cpos == cpos because cpos is only a _theoretical_
* value to get us the left path - insert_cpos might very well
* be filling that hole.
*
* Stop at a cpos of '0' because we either started at the
* leftmost branch (i.e., a tree with one branch and a
* rotation inside of it), or we've gone as far as we can in
* rotating subtrees.
*/
while (cpos && insert_cpos <= cpos) {
mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
insert_cpos, cpos);
ret = ocfs2_find_path(inode, left_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog_bug_on_msg(path_leaf_bh(left_path) ==
path_leaf_bh(right_path),
"Inode %lu: error during insert of %u "
"(left path cpos %u) results in two identical "
"paths ending at %llu\n",
inode->i_ino, insert_cpos, cpos,
(unsigned long long)
path_leaf_bh(left_path)->b_blocknr);
if (ocfs2_rotate_requires_path_adjustment(left_path,
insert_cpos)) {
mlog(0, "Path adjustment required\n");
/*
* We've rotated the tree as much as we
* should. The rest is up to
* ocfs2_insert_path() to complete, after the
* record insertion. We indicate this
* situation by returning the left path.
*
* The reason we don't adjust the records here
* before the record insert is that an error
* later might break the rule where a parent
* record e_cpos will reflect the actual
* e_cpos of the 1st nonempty record of the
* child list.
*/
*ret_left_path = left_path;
goto out_ret_path;
}
start = ocfs2_find_subtree_root(inode, left_path, right_path);
mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
start,
(unsigned long long) right_path->p_node[start].bh->b_blocknr,
right_path->p_tree_depth);
ret = ocfs2_extend_rotate_transaction(handle, start,
right_path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
right_path, start);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* There is no need to re-read the next right path
* as we know that it'll be our current left
* path. Optimize by copying values instead.
*/
ocfs2_mv_path(right_path, left_path);
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
&cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
}
out:
ocfs2_free_path(left_path);
out_ret_path:
return ret;
}
/*
* Do the final bits of extent record insertion at the target leaf
* list. If this leaf is part of an allocation tree, it is assumed
* that the tree above has been prepared.
*/
static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
struct ocfs2_extent_list *el,
struct ocfs2_insert_type *insert,
struct inode *inode)
{
int i = insert->ins_contig_index;
unsigned int range;
struct ocfs2_extent_rec *rec;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
/*
* Contiguous insert - either left or right.
*/
if (insert->ins_contig != CONTIG_NONE) {
rec = &el->l_recs[i];
if (insert->ins_contig == CONTIG_LEFT) {
rec->e_blkno = insert_rec->e_blkno;
rec->e_cpos = insert_rec->e_cpos;
}
le16_add_cpu(&rec->e_leaf_clusters,
le16_to_cpu(insert_rec->e_leaf_clusters));
return;
}
/*
* Handle insert into an empty leaf.
*/
if (le16_to_cpu(el->l_next_free_rec) == 0 ||
((le16_to_cpu(el->l_next_free_rec) == 1) &&
ocfs2_is_empty_extent(&el->l_recs[0]))) {
el->l_recs[0] = *insert_rec;
el->l_next_free_rec = cpu_to_le16(1);
return;
}
/*
* Appending insert.
*/
if (insert->ins_appending == APPEND_TAIL) {
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
range = le32_to_cpu(rec->e_cpos)
+ le16_to_cpu(rec->e_leaf_clusters);
BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
le16_to_cpu(el->l_count),
"inode %lu, depth %u, count %u, next free %u, "
"rec.cpos %u, rec.clusters %u, "
"insert.cpos %u, insert.clusters %u\n",
inode->i_ino,
le16_to_cpu(el->l_tree_depth),
le16_to_cpu(el->l_count),
le16_to_cpu(el->l_next_free_rec),
le32_to_cpu(el->l_recs[i].e_cpos),
le16_to_cpu(el->l_recs[i].e_leaf_clusters),
le32_to_cpu(insert_rec->e_cpos),
le16_to_cpu(insert_rec->e_leaf_clusters));
i++;
el->l_recs[i] = *insert_rec;
le16_add_cpu(&el->l_next_free_rec, 1);
return;
}
/*
* Ok, we have to rotate.
*
* At this point, it is safe to assume that inserting into an
* empty leaf and appending to a leaf have both been handled
* above.
*
* This leaf needs to have space, either by the empty 1st
* extent record, or by virtue of an l_next_rec < l_count.
*/
ocfs2_rotate_leaf(el, insert_rec);
}
static inline void ocfs2_update_dinode_clusters(struct inode *inode,
struct ocfs2_dinode *di,
u32 clusters)
{
le32_add_cpu(&di->i_clusters, clusters);
spin_lock(&OCFS2_I(inode)->ip_lock);
OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
spin_unlock(&OCFS2_I(inode)->ip_lock);
}
static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_path *right_path,
struct ocfs2_path **ret_left_path)
{
int ret, i, next_free;
struct buffer_head *bh;
struct ocfs2_extent_list *el;
struct ocfs2_path *left_path = NULL;
*ret_left_path = NULL;
/*
* This shouldn't happen for non-trees. The extent rec cluster
* count manipulation below only works for interior nodes.
*/
BUG_ON(right_path->p_tree_depth == 0);
/*
* If our appending insert is at the leftmost edge of a leaf,
* then we might need to update the rightmost records of the
* neighboring path.
*/
el = path_leaf_el(right_path);
next_free = le16_to_cpu(el->l_next_free_rec);
if (next_free == 0 ||
(next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
u32 left_cpos;
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
&left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "Append may need a left path update. cpos: %u, "
"left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
left_cpos);
/*
* No need to worry if the append is already in the
* leftmost leaf.
*/
if (left_cpos) {
left_path = ocfs2_new_path(path_root_bh(right_path),
path_root_el(right_path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, left_path, left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* ocfs2_insert_path() will pass the left_path to the
* journal for us.
*/
}
}
ret = ocfs2_journal_access_path(inode, handle, right_path);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_root_el(right_path);
bh = path_root_bh(right_path);
i = 0;
while (1) {
struct ocfs2_extent_rec *rec;
next_free = le16_to_cpu(el->l_next_free_rec);
if (next_free == 0) {
ocfs2_error(inode->i_sb,
"Dinode %llu has a bad extent list",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
ret = -EIO;
goto out;
}
rec = &el->l_recs[next_free - 1];
rec->e_int_clusters = insert_rec->e_cpos;
le32_add_cpu(&rec->e_int_clusters,
le16_to_cpu(insert_rec->e_leaf_clusters));
le32_add_cpu(&rec->e_int_clusters,
-le32_to_cpu(rec->e_cpos));
ret = ocfs2_journal_dirty(handle, bh);
if (ret)
mlog_errno(ret);
/* Don't touch the leaf node */
if (++i >= right_path->p_tree_depth)
break;
bh = right_path->p_node[i].bh;
el = right_path->p_node[i].el;
}
*ret_left_path = left_path;
ret = 0;
out:
if (ret != 0)
ocfs2_free_path(left_path);
return ret;
}
/*
* This function only does inserts on an allocation b-tree. For dinode
* lists, ocfs2_insert_at_leaf() is called directly.
*
* right_path is the path we want to do the actual insert
* in. left_path should only be passed in if we need to update that
* portion of the tree after an edge insert.
*/
static int ocfs2_insert_path(struct inode *inode,
handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_insert_type *insert)
{
int ret, subtree_index;
struct buffer_head *leaf_bh = path_leaf_bh(right_path);
struct ocfs2_extent_list *el;
/*
* Pass both paths to the journal. The majority of inserts
* will be touching all components anyway.
*/
ret = ocfs2_journal_access_path(inode, handle, right_path);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (left_path) {
int credits = handle->h_buffer_credits;
/*
* There's a chance that left_path got passed back to
* us without being accounted for in the
* journal. Extend our transaction here to be sure we
* can change those blocks.
*/
credits += left_path->p_tree_depth;
ret = ocfs2_extend_trans(handle, credits);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, left_path);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
el = path_leaf_el(right_path);
ocfs2_insert_at_leaf(insert_rec, el, insert, inode);
ret = ocfs2_journal_dirty(handle, leaf_bh);
if (ret)
mlog_errno(ret);
if (left_path) {
/*
* The rotate code has indicated that we need to fix
* up portions of the tree after the insert.
*
* XXX: Should we extend the transaction here?
*/
subtree_index = ocfs2_find_subtree_root(inode, left_path,
right_path);
ocfs2_complete_edge_insert(inode, handle, left_path,
right_path, subtree_index);
}
ret = 0;
out:
return ret;
}
static int ocfs2_do_insert_extent(struct inode *inode,
handle_t *handle,
struct buffer_head *di_bh,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_insert_type *type)
{
int ret, rotate = 0;
u32 cpos;
struct ocfs2_path *right_path = NULL;
struct ocfs2_path *left_path = NULL;
struct ocfs2_dinode *di;
struct ocfs2_extent_list *el;
di = (struct ocfs2_dinode *) di_bh->b_data;
el = &di->id2.i_list;
ret = ocfs2_journal_access(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
if (le16_to_cpu(el->l_tree_depth) == 0) {
ocfs2_insert_at_leaf(insert_rec, el, type, inode);
goto out_update_clusters;
}
right_path = ocfs2_new_inode_path(di_bh);
if (!right_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/*
* Determine the path to start with. Rotations need the
* rightmost path, everything else can go directly to the
* target leaf.
*/
cpos = le32_to_cpu(insert_rec->e_cpos);
if (type->ins_appending == APPEND_NONE &&
type->ins_contig == CONTIG_NONE) {
rotate = 1;
cpos = UINT_MAX;
}
ret = ocfs2_find_path(inode, right_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Rotations and appends need special treatment - they modify
* parts of the tree's above them.
*
* Both might pass back a path immediate to the left of the
* one being inserted to. This will be cause
* ocfs2_insert_path() to modify the rightmost records of
* left_path to account for an edge insert.
*
* XXX: When modifying this code, keep in mind that an insert
* can wind up skipping both of these two special cases...
*/
if (rotate) {
ret = ocfs2_rotate_tree_right(inode, handle,
le32_to_cpu(insert_rec->e_cpos),
right_path, &left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
} else if (type->ins_appending == APPEND_TAIL
&& type->ins_contig != CONTIG_LEFT) {
ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
right_path, &left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
}
ret = ocfs2_insert_path(inode, handle, left_path, right_path,
insert_rec, type);
if (ret) {
mlog_errno(ret);
goto out;
}
out_update_clusters:
ocfs2_update_dinode_clusters(inode, di,
le16_to_cpu(insert_rec->e_leaf_clusters));
ret = ocfs2_journal_dirty(handle, di_bh);
if (ret)
mlog_errno(ret);
out:
ocfs2_free_path(left_path);
ocfs2_free_path(right_path);
return ret;
}
static void ocfs2_figure_contig_type(struct inode *inode,
struct ocfs2_insert_type *insert,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i;
enum ocfs2_contig_type contig_type = CONTIG_NONE;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
insert_rec);
if (contig_type != CONTIG_NONE) {
insert->ins_contig_index = i;
break;
}
}
insert->ins_contig = contig_type;
}
/*
* This should only be called against the righmost leaf extent list.
*
* ocfs2_figure_appending_type() will figure out whether we'll have to
* insert at the tail of the rightmost leaf.
*
* This should also work against the dinode list for tree's with 0
* depth. If we consider the dinode list to be the rightmost leaf node
* then the logic here makes sense.
*/
static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i;
u32 cpos = le32_to_cpu(insert_rec->e_cpos);
struct ocfs2_extent_rec *rec;
insert->ins_appending = APPEND_NONE;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
if (!el->l_next_free_rec)
goto set_tail_append;
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
/* Were all records empty? */
if (le16_to_cpu(el->l_next_free_rec) == 1)
goto set_tail_append;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
if (cpos >=
(le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
goto set_tail_append;
return;
set_tail_append:
insert->ins_appending = APPEND_TAIL;
}
/*
* Helper function called at the begining of an insert.
*
* This computes a few things that are commonly used in the process of
* inserting into the btree:
* - Whether the new extent is contiguous with an existing one.
* - The current tree depth.
* - Whether the insert is an appending one.
* - The total # of free records in the tree.
*
* All of the information is stored on the ocfs2_insert_type
* structure.
*/
static int ocfs2_figure_insert_type(struct inode *inode,
struct buffer_head *di_bh,
struct buffer_head **last_eb_bh,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_insert_type *insert)
{
int ret;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct ocfs2_path *path = NULL;
struct buffer_head *bh = NULL;
el = &di->id2.i_list;
insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
if (el->l_tree_depth) {
/*
* If we have tree depth, we read in the
* rightmost extent block ahead of time as
* ocfs2_figure_insert_type() and ocfs2_add_branch()
* may want it later.
*/
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
le64_to_cpu(di->i_last_eb_blk), &bh,
OCFS2_BH_CACHED, inode);
if (ret) {
mlog_exit(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
}
/*
* Unless we have a contiguous insert, we'll need to know if
* there is room left in our allocation tree for another
* extent record.
*
* XXX: This test is simplistic, we can search for empty
* extent records too.
*/
insert->ins_free_records = le16_to_cpu(el->l_count) -
le16_to_cpu(el->l_next_free_rec);
if (!insert->ins_tree_depth) {
ocfs2_figure_contig_type(inode, insert, el, insert_rec);
ocfs2_figure_appending_type(insert, el, insert_rec);
return 0;
}
path = ocfs2_new_inode_path(di_bh);
if (!path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/*
* In the case that we're inserting past what the tree
* currently accounts for, ocfs2_find_path() will return for
* us the rightmost tree path. This is accounted for below in
* the appending code.
*/
ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
/*
* Now that we have the path, there's two things we want to determine:
* 1) Contiguousness (also set contig_index if this is so)
*
* 2) Are we doing an append? We can trivially break this up
* into two types of appends: simple record append, or a
* rotate inside the tail leaf.
*/
ocfs2_figure_contig_type(inode, insert, el, insert_rec);
/*
* The insert code isn't quite ready to deal with all cases of
* left contiguousness. Specifically, if it's an insert into
* the 1st record in a leaf, it will require the adjustment of
* cluster count on the last record of the path directly to it's
* left. For now, just catch that case and fool the layers
* above us. This works just fine for tree_depth == 0, which
* is why we allow that above.
*/
if (insert->ins_contig == CONTIG_LEFT &&
insert->ins_contig_index == 0)
insert->ins_contig = CONTIG_NONE;
/*
* Ok, so we can simply compare against last_eb to figure out
* whether the path doesn't exist. This will only happen in
* the case that we're doing a tail append, so maybe we can
* take advantage of that information somehow.
*/
if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
/*
* Ok, ocfs2_find_path() returned us the rightmost
* tree path. This might be an appending insert. There are
* two cases:
* 1) We're doing a true append at the tail:
* -This might even be off the end of the leaf
* 2) We're "appending" by rotating in the tail
*/
ocfs2_figure_appending_type(insert, el, insert_rec);
}
out:
ocfs2_free_path(path);
if (ret == 0)
*last_eb_bh = bh;
else
brelse(bh);
return ret;
}
/*
* Insert an extent into an inode btree.
*
* The caller needs to update fe->i_clusters
*/
int ocfs2_insert_extent(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u32 cpos,
u64 start_blk,
u32 new_clusters,
struct ocfs2_alloc_context *meta_ac)
{
int status, shift;
struct buffer_head *last_eb_bh = NULL;
struct buffer_head *bh = NULL;
struct ocfs2_insert_type insert = {0, };
struct ocfs2_extent_rec rec;
mlog(0, "add %u clusters at position %u to inode %llu\n",
new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
(OCFS2_I(inode)->ip_clusters != cpos),
"Device %s, asking for sparse allocation: inode %llu, "
"cpos %u, clusters %u\n",
osb->dev_str,
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
OCFS2_I(inode)->ip_clusters);
memset(&rec, 0, sizeof(rec));
rec.e_cpos = cpu_to_le32(cpos);
rec.e_blkno = cpu_to_le64(start_blk);
rec.e_leaf_clusters = cpu_to_le16(new_clusters);
status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
&insert);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
"Insert.contig_index: %d, Insert.free_records: %d, "
"Insert.tree_depth: %d\n",
insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
insert.ins_free_records, insert.ins_tree_depth);
/*
* Avoid growing the tree unless we're out of records and the
* insert type requres one.
*/
if (insert.ins_contig != CONTIG_NONE || insert.ins_free_records)
goto out_add;
shift = ocfs2_find_branch_target(osb, inode, fe_bh, &bh);
if (shift < 0) {
status = shift;
mlog_errno(status);
goto bail;
}
/* We traveled all the way to the bottom of the allocation tree
* and didn't find room for any more extents - we need to add
* another tree level */
if (shift) {
BUG_ON(bh);
mlog(0, "need to shift tree depth "
"(current = %d)\n", insert.ins_tree_depth);
/* ocfs2_shift_tree_depth will return us a buffer with
* the new extent block (so we can pass that to
* ocfs2_add_branch). */
status = ocfs2_shift_tree_depth(osb, handle, inode, fe_bh,
meta_ac, &bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
insert.ins_tree_depth++;
/* Special case: we have room now if we shifted from
* tree_depth 0 */
if (insert.ins_tree_depth == 1)
goto out_add;
}
/* call ocfs2_add_branch to add the final part of the tree with
* the new data. */
mlog(0, "add branch. bh = %p\n", bh);
status = ocfs2_add_branch(osb, handle, inode, fe_bh, bh, last_eb_bh,
meta_ac);
if (status < 0) {
mlog_errno(status);
goto bail;
}
out_add:
/* Finally, we can add clusters. This might rotate the tree for us. */
status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
if (status < 0)
mlog_errno(status);
else
ocfs2_extent_map_insert_rec(inode, &rec);
bail:
if (bh)
brelse(bh);
if (last_eb_bh)
brelse(last_eb_bh);
mlog_exit(status);
return status;
}
static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
{
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
"slot %d, invalid truncate log parameters: used = "
"%u, count = %u\n", osb->slot_num,
le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
}
static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
unsigned int new_start)
{
unsigned int tail_index;
unsigned int current_tail;
/* No records, nothing to coalesce */
if (!le16_to_cpu(tl->tl_used))
return 0;
tail_index = le16_to_cpu(tl->tl_used) - 1;
current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
return current_tail == new_start;
}
static int ocfs2_truncate_log_append(struct ocfs2_super *osb,
handle_t *handle,
u64 start_blk,
unsigned int num_clusters)
{
int status, index;
unsigned int start_cluster, tl_count;
struct inode *tl_inode = osb->osb_tl_inode;
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
mlog_entry("start_blk = %llu, num_clusters = %u\n",
(unsigned long long)start_blk, num_clusters);
BUG_ON(mutex_trylock(&tl_inode->i_mutex));
start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
status = -EIO;
goto bail;
}
tl_count = le16_to_cpu(tl->tl_count);
mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
tl_count == 0,
"Truncate record count on #%llu invalid "
"wanted %u, actual %u\n",
(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
ocfs2_truncate_recs_per_inode(osb->sb),
le16_to_cpu(tl->tl_count));
/* Caller should have known to flush before calling us. */
index = le16_to_cpu(tl->tl_used);
if (index >= tl_count) {
status = -ENOSPC;
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, tl_inode, tl_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mlog(0, "Log truncate of %u clusters starting at cluster %u to "
"%llu (index = %d)\n", num_clusters, start_cluster,
(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
/*
* Move index back to the record we are coalescing with.
* ocfs2_truncate_log_can_coalesce() guarantees nonzero
*/
index--;
num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
index, le32_to_cpu(tl->tl_recs[index].t_start),
num_clusters);
} else {
tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
tl->tl_used = cpu_to_le16(index + 1);
}
tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
status = ocfs2_journal_dirty(handle, tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
mlog_exit(status);
return status;
}
static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
handle_t *handle,
struct inode *data_alloc_inode,
struct buffer_head *data_alloc_bh)
{
int status = 0;
int i;
unsigned int num_clusters;
u64 start_blk;
struct ocfs2_truncate_rec rec;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
struct inode *tl_inode = osb->osb_tl_inode;
struct buffer_head *tl_bh = osb->osb_tl_bh;
mlog_entry_void();
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
i = le16_to_cpu(tl->tl_used) - 1;
while (i >= 0) {
/* Caller has given us at least enough credits to
* update the truncate log dinode */
status = ocfs2_journal_access(handle, tl_inode, tl_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
tl->tl_used = cpu_to_le16(i);
status = ocfs2_journal_dirty(handle, tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/* TODO: Perhaps we can calculate the bulk of the
* credits up front rather than extending like
* this. */
status = ocfs2_extend_trans(handle,
OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
if (status < 0) {
mlog_errno(status);
goto bail;
}
rec = tl->tl_recs[i];
start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
le32_to_cpu(rec.t_start));
num_clusters = le32_to_cpu(rec.t_clusters);
/* if start_blk is not set, we ignore the record as
* invalid. */
if (start_blk) {
mlog(0, "free record %d, start = %u, clusters = %u\n",
i, le32_to_cpu(rec.t_start), num_clusters);
status = ocfs2_free_clusters(handle, data_alloc_inode,
data_alloc_bh, start_blk,
num_clusters);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
i--;
}
bail:
mlog_exit(status);
return status;
}
/* Expects you to already be holding tl_inode->i_mutex */
static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
int status;
unsigned int num_to_flush;
handle_t *handle;
struct inode *tl_inode = osb->osb_tl_inode;
struct inode *data_alloc_inode = NULL;
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct buffer_head *data_alloc_bh = NULL;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
mlog_entry_void();
BUG_ON(mutex_trylock(&tl_inode->i_mutex));
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
status = -EIO;
goto out;
}
num_to_flush = le16_to_cpu(tl->tl_used);
mlog(0, "Flush %u records from truncate log #%llu\n",
num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
if (!num_to_flush) {
status = 0;
goto out;
}
data_alloc_inode = ocfs2_get_system_file_inode(osb,
GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT);
if (!data_alloc_inode) {
status = -EINVAL;
mlog(ML_ERROR, "Could not get bitmap inode!\n");
goto out;
}
mutex_lock(&data_alloc_inode->i_mutex);
status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
if (status < 0) {
mlog_errno(status);
goto out_mutex;
}
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto out_unlock;
}
status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
data_alloc_bh);
if (status < 0)
mlog_errno(status);
ocfs2_commit_trans(osb, handle);
out_unlock:
brelse(data_alloc_bh);
ocfs2_meta_unlock(data_alloc_inode, 1);
out_mutex:
mutex_unlock(&data_alloc_inode->i_mutex);
iput(data_alloc_inode);
out:
mlog_exit(status);
return status;
}
int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = osb->osb_tl_inode;
mutex_lock(&tl_inode->i_mutex);
status = __ocfs2_flush_truncate_log(osb);
mutex_unlock(&tl_inode->i_mutex);
return status;
}
static void ocfs2_truncate_log_worker(struct work_struct *work)
{
int status;
struct ocfs2_super *osb =
container_of(work, struct ocfs2_super,
osb_truncate_log_wq.work);
mlog_entry_void();
status = ocfs2_flush_truncate_log(osb);
if (status < 0)
mlog_errno(status);
mlog_exit(status);
}
#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
int cancel)
{
if (osb->osb_tl_inode) {
/* We want to push off log flushes while truncates are
* still running. */
if (cancel)
cancel_delayed_work(&osb->osb_truncate_log_wq);
queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
}
}
static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
int slot_num,
struct inode **tl_inode,
struct buffer_head **tl_bh)
{
int status;
struct inode *inode = NULL;
struct buffer_head *bh = NULL;
inode = ocfs2_get_system_file_inode(osb,
TRUNCATE_LOG_SYSTEM_INODE,
slot_num);
if (!inode) {
status = -EINVAL;
mlog(ML_ERROR, "Could not get load truncate log inode!\n");
goto bail;
}
status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
OCFS2_BH_CACHED, inode);
if (status < 0) {
iput(inode);
mlog_errno(status);
goto bail;
}
*tl_inode = inode;
*tl_bh = bh;
bail:
mlog_exit(status);
return status;
}
/* called during the 1st stage of node recovery. we stamp a clean
* truncate log and pass back a copy for processing later. if the
* truncate log does not require processing, a *tl_copy is set to
* NULL. */
int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
int slot_num,
struct ocfs2_dinode **tl_copy)
{
int status;
struct inode *tl_inode = NULL;
struct buffer_head *tl_bh = NULL;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
*tl_copy = NULL;
mlog(0, "recover truncate log from slot %d\n", slot_num);
status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
status = -EIO;
goto bail;
}
if (le16_to_cpu(tl->tl_used)) {
mlog(0, "We'll have %u logs to recover\n",
le16_to_cpu(tl->tl_used));
*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
if (!(*tl_copy)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
/* Assuming the write-out below goes well, this copy
* will be passed back to recovery for processing. */
memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
/* All we need to do to clear the truncate log is set
* tl_used. */
tl->tl_used = 0;
status = ocfs2_write_block(osb, tl_bh, tl_inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
bail:
if (tl_inode)
iput(tl_inode);
if (tl_bh)
brelse(tl_bh);
if (status < 0 && (*tl_copy)) {
kfree(*tl_copy);
*tl_copy = NULL;
}
mlog_exit(status);
return status;
}
int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
struct ocfs2_dinode *tl_copy)
{
int status = 0;
int i;
unsigned int clusters, num_recs, start_cluster;
u64 start_blk;
handle_t *handle;
struct inode *tl_inode = osb->osb_tl_inode;
struct ocfs2_truncate_log *tl;
mlog_entry_void();
if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
return -EINVAL;
}
tl = &tl_copy->id2.i_dealloc;
num_recs = le16_to_cpu(tl->tl_used);
mlog(0, "cleanup %u records from %llu\n", num_recs,
(unsigned long long)le64_to_cpu(tl_copy->i_blkno));
mutex_lock(&tl_inode->i_mutex);
for(i = 0; i < num_recs; i++) {
if (ocfs2_truncate_log_needs_flush(osb)) {
status = __ocfs2_flush_truncate_log(osb);
if (status < 0) {
mlog_errno(status);
goto bail_up;
}
}
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_up;
}
clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
status = ocfs2_truncate_log_append(osb, handle,
start_blk, clusters);
ocfs2_commit_trans(osb, handle);
if (status < 0) {
mlog_errno(status);
goto bail_up;
}
}
bail_up:
mutex_unlock(&tl_inode->i_mutex);
mlog_exit(status);
return status;
}
void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = osb->osb_tl_inode;
mlog_entry_void();
if (tl_inode) {
cancel_delayed_work(&osb->osb_truncate_log_wq);
flush_workqueue(ocfs2_wq);
status = ocfs2_flush_truncate_log(osb);
if (status < 0)
mlog_errno(status);
brelse(osb->osb_tl_bh);
iput(osb->osb_tl_inode);
}
mlog_exit_void();
}
int ocfs2_truncate_log_init(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = NULL;
struct buffer_head *tl_bh = NULL;
mlog_entry_void();
status = ocfs2_get_truncate_log_info(osb,
osb->slot_num,
&tl_inode,
&tl_bh);
if (status < 0)
mlog_errno(status);
/* ocfs2_truncate_log_shutdown keys on the existence of
* osb->osb_tl_inode so we don't set any of the osb variables
* until we're sure all is well. */
INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
ocfs2_truncate_log_worker);
osb->osb_tl_bh = tl_bh;
osb->osb_tl_inode = tl_inode;
mlog_exit(status);
return status;
}
/* This function will figure out whether the currently last extent
* block will be deleted, and if it will, what the new last extent
* block will be so we can update his h_next_leaf_blk field, as well
* as the dinodes i_last_eb_blk */
static int ocfs2_find_new_last_ext_blk(struct inode *inode,
unsigned int clusters_to_del,
struct ocfs2_path *path,
struct buffer_head **new_last_eb)
{
int next_free, ret = 0;
u32 cpos;
struct ocfs2_extent_rec *rec;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *bh = NULL;
*new_last_eb = NULL;
/* we have no tree, so of course, no last_eb. */
if (!path->p_tree_depth)
goto out;
/* trunc to zero special case - this makes tree_depth = 0
* regardless of what it is. */
if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
goto out;
el = path_leaf_el(path);
BUG_ON(!el->l_next_free_rec);
/*
* Make sure that this extent list will actually be empty
* after we clear away the data. We can shortcut out if
* there's more than one non-empty extent in the
* list. Otherwise, a check of the remaining extent is
* necessary.
*/
next_free = le16_to_cpu(el->l_next_free_rec);
rec = NULL;
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
if (next_free > 2)
goto out;
/* We may have a valid extent in index 1, check it. */
if (next_free == 2)
rec = &el->l_recs[1];
/*
* Fall through - no more nonempty extents, so we want
* to delete this leaf.
*/
} else {
if (next_free > 1)
goto out;
rec = &el->l_recs[0];
}
if (rec) {
/*
* Check it we'll only be trimming off the end of this
* cluster.
*/
if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
goto out;
}
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
if (ret) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
ret = -EROFS;
goto out;
}
*new_last_eb = bh;
get_bh(*new_last_eb);
mlog(0, "returning block %llu, (cpos: %u)\n",
(unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
out:
brelse(bh);
return ret;
}
/*
* Trim some clusters off the rightmost edge of a tree. Only called
* during truncate.
*
* The caller needs to:
* - start journaling of each path component.
* - compute and fully set up any new last ext block
*/
static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
handle_t *handle, struct ocfs2_truncate_context *tc,
u32 clusters_to_del, u64 *delete_start)
{
int ret, i, index = path->p_tree_depth;
u32 new_edge = 0;
u64 deleted_eb = 0;
struct buffer_head *bh;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
*delete_start = 0;
while (index >= 0) {
bh = path->p_node[index].bh;
el = path->p_node[index].el;
mlog(0, "traveling tree (index = %d, block = %llu)\n",
index, (unsigned long long)bh->b_blocknr);
BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
if (index !=
(path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
ocfs2_error(inode->i_sb,
"Inode %lu has invalid ext. block %llu",
inode->i_ino,
(unsigned long long)bh->b_blocknr);
ret = -EROFS;
goto out;
}
find_tail_record:
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
"next = %u\n", i, le32_to_cpu(rec->e_cpos),
ocfs2_rec_clusters(el, rec),
(unsigned long long)le64_to_cpu(rec->e_blkno),
le16_to_cpu(el->l_next_free_rec));
BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
if (le16_to_cpu(el->l_tree_depth) == 0) {
/*
* If the leaf block contains a single empty
* extent and no records, we can just remove
* the block.
*/
if (i == 0 && ocfs2_is_empty_extent(rec)) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
el->l_next_free_rec = cpu_to_le16(0);
goto delete;
}
/*
* Remove any empty extents by shifting things
* left. That should make life much easier on
* the code below. This condition is rare
* enough that we shouldn't see a performance
* hit.
*/
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
le16_add_cpu(&el->l_next_free_rec, -1);
for(i = 0;
i < le16_to_cpu(el->l_next_free_rec); i++)
el->l_recs[i] = el->l_recs[i + 1];
memset(&el->l_recs[i], 0,
sizeof(struct ocfs2_extent_rec));
/*
* We've modified our extent list. The
* simplest way to handle this change
* is to being the search from the
* start again.
*/
goto find_tail_record;
}
le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
/*
* We'll use "new_edge" on our way back up the
* tree to know what our rightmost cpos is.
*/
new_edge = le16_to_cpu(rec->e_leaf_clusters);
new_edge += le32_to_cpu(rec->e_cpos);
/*
* The caller will use this to delete data blocks.
*/
*delete_start = le64_to_cpu(rec->e_blkno)
+ ocfs2_clusters_to_blocks(inode->i_sb,
le16_to_cpu(rec->e_leaf_clusters));
/*
* If it's now empty, remove this record.
*/
if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&el->l_next_free_rec, -1);
}
} else {
if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&el->l_next_free_rec, -1);
goto delete;
}
/* Can this actually happen? */
if (le16_to_cpu(el->l_next_free_rec) == 0)
goto delete;
/*
* We never actually deleted any clusters
* because our leaf was empty. There's no
* reason to adjust the rightmost edge then.
*/
if (new_edge == 0)
goto delete;
rec->e_int_clusters = cpu_to_le32(new_edge);
le32_add_cpu(&rec->e_int_clusters,
-le32_to_cpu(rec->e_cpos));
/*
* A deleted child record should have been
* caught above.
*/
BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
}
delete:
ret = ocfs2_journal_dirty(handle, bh);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "extent list container %llu, after: record %d: "
"(%u, %u, %llu), next = %u.\n",
(unsigned long long)bh->b_blocknr, i,
le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
(unsigned long long)le64_to_cpu(rec->e_blkno),
le16_to_cpu(el->l_next_free_rec));
/*
* We must be careful to only attempt delete of an
* extent block (and not the root inode block).
*/
if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
struct ocfs2_extent_block *eb =
(struct ocfs2_extent_block *)bh->b_data;
/*
* Save this for use when processing the
* parent block.
*/
deleted_eb = le64_to_cpu(eb->h_blkno);
mlog(0, "deleting this extent block.\n");
ocfs2_remove_from_cache(inode, bh);
BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
if (le16_to_cpu(eb->h_suballoc_slot) == 0) {
/*
* This code only understands how to
* lock the suballocator in slot 0,
* which is fine because allocation is
* only ever done out of that
* suballocator too. A future version
* might change that however, so avoid
* a free if we don't know how to
* handle it. This way an fs incompat
* bit will not be necessary.
*/
ret = ocfs2_free_extent_block(handle,
tc->tc_ext_alloc_inode,
tc->tc_ext_alloc_bh,
eb);
/* An error here is not fatal. */
if (ret < 0)
mlog_errno(ret);
}
} else {
deleted_eb = 0;
}
index--;
}
ret = 0;
out:
return ret;
}
static int ocfs2_do_truncate(struct ocfs2_super *osb,
unsigned int clusters_to_del,
struct inode *inode,
struct buffer_head *fe_bh,
handle_t *handle,
struct ocfs2_truncate_context *tc,
struct ocfs2_path *path)
{
int status;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *last_eb = NULL;
struct ocfs2_extent_list *el;
struct buffer_head *last_eb_bh = NULL;
u64 delete_blk = 0;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
path, &last_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/*
* Each component will be touched, so we might as well journal
* here to avoid having to handle errors later.
*/
status = ocfs2_journal_access_path(inode, handle, path);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (last_eb_bh) {
status = ocfs2_journal_access(handle, inode, last_eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
}
el = &(fe->id2.i_list);
/*
* Lower levels depend on this never happening, but it's best
* to check it up here before changing the tree.
*/
if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
ocfs2_error(inode->i_sb,
"Inode %lu has an empty extent record, depth %u\n",
inode->i_ino, le16_to_cpu(el->l_tree_depth));
status = -EROFS;
goto bail;
}
spin_lock(&OCFS2_I(inode)->ip_lock);
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
clusters_to_del;
spin_unlock(&OCFS2_I(inode)->ip_lock);
le32_add_cpu(&fe->i_clusters, -clusters_to_del);
status = ocfs2_trim_tree(inode, path, handle, tc,
clusters_to_del, &delete_blk);
if (status) {
mlog_errno(status);
goto bail;
}
if (le32_to_cpu(fe->i_clusters) == 0) {
/* trunc to zero is a special case. */
el->l_tree_depth = 0;
fe->i_last_eb_blk = 0;
} else if (last_eb)
fe->i_last_eb_blk = last_eb->h_blkno;
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (last_eb) {
/* If there will be a new last extent block, then by
* definition, there cannot be any leaves to the right of
* him. */
last_eb->h_next_leaf_blk = 0;
status = ocfs2_journal_dirty(handle, last_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
if (delete_blk) {
status = ocfs2_truncate_log_append(osb, handle, delete_blk,
clusters_to_del);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
mlog_exit(status);
return status;
}
static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
{
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
return 0;
}
static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
{
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
return ocfs2_journal_dirty_data(handle, bh);
}
static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t isize,
struct page **pages, int numpages,
u64 phys, handle_t *handle)
{
int i, ret, partial = 0;
void *kaddr;
struct page *page;
unsigned int from, to = PAGE_CACHE_SIZE;
struct super_block *sb = inode->i_sb;
BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
if (numpages == 0)
goto out;
from = isize & (PAGE_CACHE_SIZE - 1); /* 1st page offset */
if (PAGE_CACHE_SHIFT > OCFS2_SB(sb)->s_clustersize_bits) {
/*
* Since 'from' has been capped to a value below page
* size, this calculation won't be able to overflow
* 'to'
*/
to = ocfs2_align_bytes_to_clusters(sb, from);
/*
* The truncate tail in this case should never contain
* more than one page at maximum. The loop below also
* assumes this.
*/
BUG_ON(numpages != 1);
}
for(i = 0; i < numpages; i++) {
page = pages[i];
BUG_ON(from > PAGE_CACHE_SIZE);
BUG_ON(to > PAGE_CACHE_SIZE);
ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
if (ret)
mlog_errno(ret);
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + from, 0, to - from);
kunmap_atomic(kaddr, KM_USER0);
/*
* Need to set the buffers we zero'd into uptodate
* here if they aren't - ocfs2_map_page_blocks()
* might've skipped some
*/
if (ocfs2_should_order_data(inode)) {
ret = walk_page_buffers(handle,
page_buffers(page),
from, to, &partial,
ocfs2_ordered_zero_func);
if (ret < 0)
mlog_errno(ret);
} else {
ret = walk_page_buffers(handle, page_buffers(page),
from, to, &partial,
ocfs2_writeback_zero_func);
if (ret < 0)
mlog_errno(ret);
}
if (!partial)
SetPageUptodate(page);
flush_dcache_page(page);
/*
* Every page after the 1st one should be completely zero'd.
*/
from = 0;
}
out:
if (pages) {
for (i = 0; i < numpages; i++) {
page = pages[i];
unlock_page(page);
mark_page_accessed(page);
page_cache_release(page);
}
}
}
static int ocfs2_grab_eof_pages(struct inode *inode, loff_t isize, struct page **pages,
int *num, u64 *phys)
{
int i, numpages = 0, ret = 0;
unsigned int csize = OCFS2_SB(inode->i_sb)->s_clustersize;
unsigned int ext_flags;
struct super_block *sb = inode->i_sb;
struct address_space *mapping = inode->i_mapping;
unsigned long index;
u64 next_cluster_bytes;
BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
/* Cluster boundary, so we don't need to grab any pages. */
if ((isize & (csize - 1)) == 0)
goto out;
ret = ocfs2_extent_map_get_blocks(inode, isize >> sb->s_blocksize_bits,
phys, NULL, &ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
/* Tail is a hole. */
if (*phys == 0)
goto out;
/* Tail is marked as unwritten, we can count on write to zero
* in that case. */
if (ext_flags & OCFS2_EXT_UNWRITTEN)
goto out;
next_cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, isize);
index = isize >> PAGE_CACHE_SHIFT;
do {
pages[numpages] = grab_cache_page(mapping, index);
if (!pages[numpages]) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
numpages++;
index++;
} while (index < (next_cluster_bytes >> PAGE_CACHE_SHIFT));
out:
if (ret != 0) {
if (pages) {
for (i = 0; i < numpages; i++) {
if (pages[i]) {
unlock_page(pages[i]);
page_cache_release(pages[i]);
}
}
}
numpages = 0;
}
*num = numpages;
return ret;
}
/*
* Zero the area past i_size but still within an allocated
* cluster. This avoids exposing nonzero data on subsequent file
* extends.
*
* We need to call this before i_size is updated on the inode because
* otherwise block_write_full_page() will skip writeout of pages past
* i_size. The new_i_size parameter is passed for this reason.
*/
int ocfs2_zero_tail_for_truncate(struct inode *inode, handle_t *handle,
u64 new_i_size)
{
int ret, numpages;
loff_t endbyte;
struct page **pages = NULL;
u64 phys;
/*
* File systems which don't support sparse files zero on every
* extend.
*/
if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
return 0;
pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
sizeof(struct page *), GFP_NOFS);
if (pages == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_grab_eof_pages(inode, new_i_size, pages, &numpages, &phys);
if (ret) {
mlog_errno(ret);
goto out;
}
if (numpages == 0)
goto out;
ocfs2_zero_cluster_pages(inode, new_i_size, pages, numpages, phys,
handle);
/*
* Initiate writeout of the pages we zero'd here. We don't
* wait on them - the truncate_inode_pages() call later will
* do that for us.
*/
endbyte = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
ret = do_sync_mapping_range(inode->i_mapping, new_i_size,
endbyte - 1, SYNC_FILE_RANGE_WRITE);
if (ret)
mlog_errno(ret);
out:
if (pages)
kfree(pages);
return ret;
}
/*
* It is expected, that by the time you call this function,
* inode->i_size and fe->i_size have been adjusted.
*
* WARNING: This will kfree the truncate context
*/
int ocfs2_commit_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_truncate_context *tc)
{
int status, i, credits, tl_sem = 0;
u32 clusters_to_del, new_highest_cpos, range;
struct ocfs2_extent_list *el;
handle_t *handle = NULL;
struct inode *tl_inode = osb->osb_tl_inode;
struct ocfs2_path *path = NULL;
mlog_entry_void();
down_write(&OCFS2_I(inode)->ip_alloc_sem);
new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
i_size_read(inode));
path = ocfs2_new_inode_path(fe_bh);
if (!path) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ocfs2_extent_map_trunc(inode, new_highest_cpos);
start:
/*
* Check that we still have allocation to delete.
*/
if (OCFS2_I(inode)->ip_clusters == 0) {
status = 0;
goto bail;
}
/*
* Truncate always works against the rightmost tree branch.
*/
status = ocfs2_find_path(inode, path, UINT_MAX);
if (status) {
mlog_errno(status);
goto bail;
}
mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
/*
* By now, el will point to the extent list on the bottom most
* portion of this tree. Only the tail record is considered in
* each pass.
*
* We handle the following cases, in order:
* - empty extent: delete the remaining branch
* - remove the entire record
* - remove a partial record
* - no record needs to be removed (truncate has completed)
*/
el = path_leaf_el(path);
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has empty extent block at %llu\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)path_leaf_bh(path)->b_blocknr);
status = -EROFS;
goto bail;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
range = le32_to_cpu(el->l_recs[i].e_cpos) +
ocfs2_rec_clusters(el, &el->l_recs[i]);
if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
clusters_to_del = 0;
} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
} else if (range > new_highest_cpos) {
clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
le32_to_cpu(el->l_recs[i].e_cpos)) -
new_highest_cpos;
} else {
status = 0;
goto bail;
}
mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
BUG_ON(clusters_to_del == 0);
mutex_lock(&tl_inode->i_mutex);
tl_sem = 1;
/* ocfs2_truncate_log_needs_flush guarantees us at least one
* record is free for use. If there isn't any, we flush to get
* an empty truncate log. */
if (ocfs2_truncate_log_needs_flush(osb)) {
status = __ocfs2_flush_truncate_log(osb);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
(struct ocfs2_dinode *)fe_bh->b_data,
el);
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto bail;
}
status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
tc, path);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mutex_unlock(&tl_inode->i_mutex);
tl_sem = 0;
ocfs2_commit_trans(osb, handle);
handle = NULL;
ocfs2_reinit_path(path, 1);
/*
* The check above will catch the case where we've truncated
* away all allocation.
*/
goto start;
bail:
up_write(&OCFS2_I(inode)->ip_alloc_sem);
ocfs2_schedule_truncate_log_flush(osb, 1);
if (tl_sem)
mutex_unlock(&tl_inode->i_mutex);
if (handle)
ocfs2_commit_trans(osb, handle);
ocfs2_free_path(path);
/* This will drop the ext_alloc cluster lock for us */
ocfs2_free_truncate_context(tc);
mlog_exit(status);
return status;
}
/*
* Expects the inode to already be locked. This will figure out which
* inodes need to be locked and will put them on the returned truncate
* context.
*/
int ocfs2_prepare_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_truncate_context **tc)
{
int status, metadata_delete, i;
unsigned int new_i_clusters;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *last_eb_bh = NULL;
struct inode *ext_alloc_inode = NULL;
struct buffer_head *ext_alloc_bh = NULL;
mlog_entry_void();
*tc = NULL;
new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
i_size_read(inode));
fe = (struct ocfs2_dinode *) fe_bh->b_data;
mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
"%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
(unsigned long long)le64_to_cpu(fe->i_size));
*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
if (!(*tc)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
metadata_delete = 0;
if (fe->id2.i_list.l_tree_depth) {
/* If we have a tree, then the truncate may result in
* metadata deletes. Figure this out from the
* rightmost leaf block.*/
status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
&last_eb_bh, OCFS2_BH_CACHED, inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
brelse(last_eb_bh);
status = -EIO;
goto bail;
}
el = &(eb->h_list);
i = 0;
if (ocfs2_is_empty_extent(&el->l_recs[0]))
i = 1;
/*
* XXX: Should we check that next_free_rec contains
* the extent?
*/
if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_i_clusters)
metadata_delete = 1;
}
(*tc)->tc_last_eb_bh = last_eb_bh;
if (metadata_delete) {
mlog(0, "Will have to delete metadata for this trunc. "
"locking allocator.\n");
ext_alloc_inode = ocfs2_get_system_file_inode(osb, EXTENT_ALLOC_SYSTEM_INODE, 0);
if (!ext_alloc_inode) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
mutex_lock(&ext_alloc_inode->i_mutex);
(*tc)->tc_ext_alloc_inode = ext_alloc_inode;
status = ocfs2_meta_lock(ext_alloc_inode, &ext_alloc_bh, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
(*tc)->tc_ext_alloc_bh = ext_alloc_bh;
(*tc)->tc_ext_alloc_locked = 1;
}
status = 0;
bail:
if (status < 0) {
if (*tc)
ocfs2_free_truncate_context(*tc);
*tc = NULL;
}
mlog_exit_void();
return status;
}
static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
{
if (tc->tc_ext_alloc_inode) {
if (tc->tc_ext_alloc_locked)
ocfs2_meta_unlock(tc->tc_ext_alloc_inode, 1);
mutex_unlock(&tc->tc_ext_alloc_inode->i_mutex);
iput(tc->tc_ext_alloc_inode);
}
if (tc->tc_ext_alloc_bh)
brelse(tc->tc_ext_alloc_bh);
if (tc->tc_last_eb_bh)
brelse(tc->tc_last_eb_bh);
kfree(tc);
}