kernel_optimize_test/drivers/net/meth.c
Jeff Garzik 6aa20a2235 drivers/net: Trim trailing whitespace
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2006-09-13 13:24:59 -04:00

844 lines
23 KiB
C

/*
* meth.c -- O2 Builtin 10/100 Ethernet driver
*
* Copyright (C) 2001-2003 Ilya Volynets
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h> /* printk() */
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/interrupt.h> /* mark_bh */
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/device.h> /* struct device, et al */
#include <linux/netdevice.h> /* struct device, and other headers */
#include <linux/etherdevice.h> /* eth_type_trans */
#include <linux/ip.h> /* struct iphdr */
#include <linux/tcp.h> /* struct tcphdr */
#include <linux/skbuff.h>
#include <linux/mii.h> /* MII definitions */
#include <asm/ip32/mace.h>
#include <asm/ip32/ip32_ints.h>
#include <asm/io.h>
#include <asm/checksum.h>
#include <asm/scatterlist.h>
#include <linux/dma-mapping.h>
#include "meth.h"
#ifndef MFE_DEBUG
#define MFE_DEBUG 0
#endif
#if MFE_DEBUG>=1
#define DPRINTK(str,args...) printk(KERN_DEBUG "meth: %s: " str, __FUNCTION__ , ## args)
#define MFE_RX_DEBUG 2
#else
#define DPRINTK(str,args...)
#define MFE_RX_DEBUG 0
#endif
static const char *meth_str="SGI O2 Fast Ethernet";
MODULE_AUTHOR("Ilya Volynets <ilya@theIlya.com>");
MODULE_DESCRIPTION("SGI O2 Builtin Fast Ethernet driver");
#define HAVE_TX_TIMEOUT
/* The maximum time waited (in jiffies) before assuming a Tx failed. (400ms) */
#define TX_TIMEOUT (400*HZ/1000)
#ifdef HAVE_TX_TIMEOUT
static int timeout = TX_TIMEOUT;
module_param(timeout, int, 0);
#endif
/*
* This structure is private to each device. It is used to pass
* packets in and out, so there is place for a packet
*/
struct meth_private {
struct net_device_stats stats;
/* in-memory copy of MAC Control register */
unsigned long mac_ctrl;
/* in-memory copy of DMA Control register */
unsigned long dma_ctrl;
/* address of PHY, used by mdio_* functions, initialized in mdio_probe */
unsigned long phy_addr;
tx_packet *tx_ring;
dma_addr_t tx_ring_dma;
struct sk_buff *tx_skbs[TX_RING_ENTRIES];
dma_addr_t tx_skb_dmas[TX_RING_ENTRIES];
unsigned long tx_read, tx_write, tx_count;
rx_packet *rx_ring[RX_RING_ENTRIES];
dma_addr_t rx_ring_dmas[RX_RING_ENTRIES];
struct sk_buff *rx_skbs[RX_RING_ENTRIES];
unsigned long rx_write;
spinlock_t meth_lock;
};
static void meth_tx_timeout(struct net_device *dev);
static irqreturn_t meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs);
/* global, initialized in ip32-setup.c */
char o2meth_eaddr[8]={0,0,0,0,0,0,0,0};
static inline void load_eaddr(struct net_device *dev)
{
int i;
DPRINTK("Loading MAC Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
(int)o2meth_eaddr[0]&0xFF,(int)o2meth_eaddr[1]&0xFF,(int)o2meth_eaddr[2]&0xFF,
(int)o2meth_eaddr[3]&0xFF,(int)o2meth_eaddr[4]&0xFF,(int)o2meth_eaddr[5]&0xFF);
for (i = 0; i < 6; i++)
dev->dev_addr[i] = o2meth_eaddr[i];
mace->eth.mac_addr = (*(unsigned long*)o2meth_eaddr) >> 16;
}
/*
* Waits for BUSY status of mdio bus to clear
*/
#define WAIT_FOR_PHY(___rval) \
while ((___rval = mace->eth.phy_data) & MDIO_BUSY) { \
udelay(25); \
}
/*read phy register, return value read */
static unsigned long mdio_read(struct meth_private *priv, unsigned long phyreg)
{
unsigned long rval;
WAIT_FOR_PHY(rval);
mace->eth.phy_regs = (priv->phy_addr << 5) | (phyreg & 0x1f);
udelay(25);
mace->eth.phy_trans_go = 1;
udelay(25);
WAIT_FOR_PHY(rval);
return rval & MDIO_DATA_MASK;
}
static int mdio_probe(struct meth_private *priv)
{
int i;
unsigned long p2, p3;
/* check if phy is detected already */
if(priv->phy_addr>=0&&priv->phy_addr<32)
return 0;
spin_lock(&priv->meth_lock);
for (i=0;i<32;++i){
priv->phy_addr=i;
p2=mdio_read(priv,2);
p3=mdio_read(priv,3);
#if MFE_DEBUG>=2
switch ((p2<<12)|(p3>>4)){
case PHY_QS6612X:
DPRINTK("PHY is QS6612X\n");
break;
case PHY_ICS1889:
DPRINTK("PHY is ICS1889\n");
break;
case PHY_ICS1890:
DPRINTK("PHY is ICS1890\n");
break;
case PHY_DP83840:
DPRINTK("PHY is DP83840\n");
break;
}
#endif
if(p2!=0xffff&&p2!=0x0000){
DPRINTK("PHY code: %x\n",(p2<<12)|(p3>>4));
break;
}
}
spin_unlock(&priv->meth_lock);
if(priv->phy_addr<32) {
return 0;
}
DPRINTK("Oopsie! PHY is not known!\n");
priv->phy_addr=-1;
return -ENODEV;
}
static void meth_check_link(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long mii_advertising = mdio_read(priv, 4);
unsigned long mii_partner = mdio_read(priv, 5);
unsigned long negotiated = mii_advertising & mii_partner;
unsigned long duplex, speed;
if (mii_partner == 0xffff)
return;
speed = (negotiated & 0x0380) ? METH_100MBIT : 0;
duplex = ((negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040) ?
METH_PHY_FDX : 0;
if ((priv->mac_ctrl & METH_PHY_FDX) ^ duplex) {
DPRINTK("Setting %s-duplex\n", duplex ? "full" : "half");
if (duplex)
priv->mac_ctrl |= METH_PHY_FDX;
else
priv->mac_ctrl &= ~METH_PHY_FDX;
mace->eth.mac_ctrl = priv->mac_ctrl;
}
if ((priv->mac_ctrl & METH_100MBIT) ^ speed) {
DPRINTK("Setting %dMbs mode\n", speed ? 100 : 10);
if (duplex)
priv->mac_ctrl |= METH_100MBIT;
else
priv->mac_ctrl &= ~METH_100MBIT;
mace->eth.mac_ctrl = priv->mac_ctrl;
}
}
static int meth_init_tx_ring(struct meth_private *priv)
{
/* Init TX ring */
priv->tx_ring = dma_alloc_coherent(NULL, TX_RING_BUFFER_SIZE,
&priv->tx_ring_dma, GFP_ATOMIC);
if (!priv->tx_ring)
return -ENOMEM;
memset(priv->tx_ring, 0, TX_RING_BUFFER_SIZE);
priv->tx_count = priv->tx_read = priv->tx_write = 0;
mace->eth.tx_ring_base = priv->tx_ring_dma;
/* Now init skb save area */
memset(priv->tx_skbs, 0, sizeof(priv->tx_skbs));
memset(priv->tx_skb_dmas, 0, sizeof(priv->tx_skb_dmas));
return 0;
}
static int meth_init_rx_ring(struct meth_private *priv)
{
int i;
for (i = 0; i < RX_RING_ENTRIES; i++) {
priv->rx_skbs[i] = alloc_skb(METH_RX_BUFF_SIZE, 0);
/* 8byte status vector + 3quad padding + 2byte padding,
* to put data on 64bit aligned boundary */
skb_reserve(priv->rx_skbs[i],METH_RX_HEAD);
priv->rx_ring[i]=(rx_packet*)(priv->rx_skbs[i]->head);
/* I'll need to re-sync it after each RX */
priv->rx_ring_dmas[i] =
dma_map_single(NULL, priv->rx_ring[i],
METH_RX_BUFF_SIZE, DMA_FROM_DEVICE);
mace->eth.rx_fifo = priv->rx_ring_dmas[i];
}
priv->rx_write = 0;
return 0;
}
static void meth_free_tx_ring(struct meth_private *priv)
{
int i;
/* Remove any pending skb */
for (i = 0; i < TX_RING_ENTRIES; i++) {
if (priv->tx_skbs[i])
dev_kfree_skb(priv->tx_skbs[i]);
priv->tx_skbs[i] = NULL;
}
dma_free_coherent(NULL, TX_RING_BUFFER_SIZE, priv->tx_ring,
priv->tx_ring_dma);
}
/* Presumes RX DMA engine is stopped, and RX fifo ring is reset */
static void meth_free_rx_ring(struct meth_private *priv)
{
int i;
for (i = 0; i < RX_RING_ENTRIES; i++) {
dma_unmap_single(NULL, priv->rx_ring_dmas[i],
METH_RX_BUFF_SIZE, DMA_FROM_DEVICE);
priv->rx_ring[i] = 0;
priv->rx_ring_dmas[i] = 0;
kfree_skb(priv->rx_skbs[i]);
}
}
int meth_reset(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
/* Reset card */
mace->eth.mac_ctrl = SGI_MAC_RESET;
udelay(1);
mace->eth.mac_ctrl = 0;
udelay(25);
/* Load ethernet address */
load_eaddr(dev);
/* Should load some "errata", but later */
/* Check for device */
if (mdio_probe(priv) < 0) {
DPRINTK("Unable to find PHY\n");
return -ENODEV;
}
/* Initial mode: 10 | Half-duplex | Accept normal packets */
priv->mac_ctrl = METH_ACCEPT_MCAST | METH_DEFAULT_IPG;
if (dev->flags | IFF_PROMISC)
priv->mac_ctrl |= METH_PROMISC;
mace->eth.mac_ctrl = priv->mac_ctrl;
/* Autonegotiate speed and duplex mode */
meth_check_link(dev);
/* Now set dma control, but don't enable DMA, yet */
priv->dma_ctrl = (4 << METH_RX_OFFSET_SHIFT) |
(RX_RING_ENTRIES << METH_RX_DEPTH_SHIFT);
mace->eth.dma_ctrl = priv->dma_ctrl;
return 0;
}
/*============End Helper Routines=====================*/
/*
* Open and close
*/
static int meth_open(struct net_device *dev)
{
struct meth_private *priv = dev->priv;
int ret;
priv->phy_addr = -1; /* No PHY is known yet... */
/* Initialize the hardware */
ret = meth_reset(dev);
if (ret < 0)
return ret;
/* Allocate the ring buffers */
ret = meth_init_tx_ring(priv);
if (ret < 0)
return ret;
ret = meth_init_rx_ring(priv);
if (ret < 0)
goto out_free_tx_ring;
ret = request_irq(dev->irq, meth_interrupt, 0, meth_str, dev);
if (ret) {
printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
goto out_free_rx_ring;
}
/* Start DMA */
priv->dma_ctrl |= METH_DMA_TX_EN | /*METH_DMA_TX_INT_EN |*/
METH_DMA_RX_EN | METH_DMA_RX_INT_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
DPRINTK("About to start queue\n");
netif_start_queue(dev);
return 0;
out_free_rx_ring:
meth_free_rx_ring(priv);
out_free_tx_ring:
meth_free_tx_ring(priv);
return ret;
}
static int meth_release(struct net_device *dev)
{
struct meth_private *priv = dev->priv;
DPRINTK("Stopping queue\n");
netif_stop_queue(dev); /* can't transmit any more */
/* shut down DMA */
priv->dma_ctrl &= ~(METH_DMA_TX_EN | METH_DMA_TX_INT_EN |
METH_DMA_RX_EN | METH_DMA_RX_INT_EN);
mace->eth.dma_ctrl = priv->dma_ctrl;
free_irq(dev->irq, dev);
meth_free_tx_ring(priv);
meth_free_rx_ring(priv);
return 0;
}
/*
* Receive a packet: retrieve, encapsulate and pass over to upper levels
*/
static void meth_rx(struct net_device* dev, unsigned long int_status)
{
struct sk_buff *skb;
unsigned long status;
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long fifo_rptr = (int_status & METH_INT_RX_RPTR_MASK) >> 8;
spin_lock(&priv->meth_lock);
priv->dma_ctrl &= ~METH_DMA_RX_INT_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
spin_unlock(&priv->meth_lock);
if (int_status & METH_INT_RX_UNDERFLOW) {
fifo_rptr = (fifo_rptr - 1) & 0x0f;
}
while (priv->rx_write != fifo_rptr) {
dma_unmap_single(NULL, priv->rx_ring_dmas[priv->rx_write],
METH_RX_BUFF_SIZE, DMA_FROM_DEVICE);
status = priv->rx_ring[priv->rx_write]->status.raw;
#if MFE_DEBUG
if (!(status & METH_RX_ST_VALID)) {
DPRINTK("Not received? status=%016lx\n",status);
}
#endif
if ((!(status & METH_RX_STATUS_ERRORS)) && (status & METH_RX_ST_VALID)) {
int len = (status & 0xffff) - 4; /* omit CRC */
/* length sanity check */
if (len < 60 || len > 1518) {
printk(KERN_DEBUG "%s: bogus packet size: %ld, status=%#2lx.\n",
dev->name, priv->rx_write,
priv->rx_ring[priv->rx_write]->status.raw);
priv->stats.rx_errors++;
priv->stats.rx_length_errors++;
skb = priv->rx_skbs[priv->rx_write];
} else {
skb = alloc_skb(METH_RX_BUFF_SIZE, GFP_ATOMIC | GFP_DMA);
if (!skb) {
/* Ouch! No memory! Drop packet on the floor */
DPRINTK("No mem: dropping packet\n");
priv->stats.rx_dropped++;
skb = priv->rx_skbs[priv->rx_write];
} else {
struct sk_buff *skb_c = priv->rx_skbs[priv->rx_write];
/* 8byte status vector + 3quad padding + 2byte padding,
* to put data on 64bit aligned boundary */
skb_reserve(skb, METH_RX_HEAD);
/* Write metadata, and then pass to the receive level */
skb_put(skb_c, len);
priv->rx_skbs[priv->rx_write] = skb;
skb_c->dev = dev;
skb_c->protocol = eth_type_trans(skb_c, dev);
dev->last_rx = jiffies;
priv->stats.rx_packets++;
priv->stats.rx_bytes += len;
netif_rx(skb_c);
}
}
} else {
priv->stats.rx_errors++;
skb=priv->rx_skbs[priv->rx_write];
#if MFE_DEBUG>0
printk(KERN_WARNING "meth: RX error: status=0x%016lx\n",status);
if(status&METH_RX_ST_RCV_CODE_VIOLATION)
printk(KERN_WARNING "Receive Code Violation\n");
if(status&METH_RX_ST_CRC_ERR)
printk(KERN_WARNING "CRC error\n");
if(status&METH_RX_ST_INV_PREAMBLE_CTX)
printk(KERN_WARNING "Invalid Preamble Context\n");
if(status&METH_RX_ST_LONG_EVT_SEEN)
printk(KERN_WARNING "Long Event Seen...\n");
if(status&METH_RX_ST_BAD_PACKET)
printk(KERN_WARNING "Bad Packet\n");
if(status&METH_RX_ST_CARRIER_EVT_SEEN)
printk(KERN_WARNING "Carrier Event Seen\n");
#endif
}
priv->rx_ring[priv->rx_write] = (rx_packet*)skb->head;
priv->rx_ring[priv->rx_write]->status.raw = 0;
priv->rx_ring_dmas[priv->rx_write] =
dma_map_single(NULL, priv->rx_ring[priv->rx_write],
METH_RX_BUFF_SIZE, DMA_FROM_DEVICE);
mace->eth.rx_fifo = priv->rx_ring_dmas[priv->rx_write];
ADVANCE_RX_PTR(priv->rx_write);
}
spin_lock(&priv->meth_lock);
/* In case there was underflow, and Rx DMA was disabled */
priv->dma_ctrl |= METH_DMA_RX_INT_EN | METH_DMA_RX_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
mace->eth.int_stat = METH_INT_RX_THRESHOLD;
spin_unlock(&priv->meth_lock);
}
static int meth_tx_full(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
return (priv->tx_count >= TX_RING_ENTRIES - 1);
}
static void meth_tx_cleanup(struct net_device* dev, unsigned long int_status)
{
struct meth_private *priv = dev->priv;
unsigned long status;
struct sk_buff *skb;
unsigned long rptr = (int_status&TX_INFO_RPTR) >> 16;
spin_lock(&priv->meth_lock);
/* Stop DMA notification */
priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN);
mace->eth.dma_ctrl = priv->dma_ctrl;
while (priv->tx_read != rptr) {
skb = priv->tx_skbs[priv->tx_read];
status = priv->tx_ring[priv->tx_read].header.raw;
#if MFE_DEBUG>=1
if (priv->tx_read == priv->tx_write)
DPRINTK("Auchi! tx_read=%d,tx_write=%d,rptr=%d?\n", priv->tx_read, priv->tx_write,rptr);
#endif
if (status & METH_TX_ST_DONE) {
if (status & METH_TX_ST_SUCCESS){
priv->stats.tx_packets++;
priv->stats.tx_bytes += skb->len;
} else {
priv->stats.tx_errors++;
#if MFE_DEBUG>=1
DPRINTK("TX error: status=%016lx <",status);
if(status & METH_TX_ST_SUCCESS)
printk(" SUCCESS");
if(status & METH_TX_ST_TOOLONG)
printk(" TOOLONG");
if(status & METH_TX_ST_UNDERRUN)
printk(" UNDERRUN");
if(status & METH_TX_ST_EXCCOLL)
printk(" EXCCOLL");
if(status & METH_TX_ST_DEFER)
printk(" DEFER");
if(status & METH_TX_ST_LATECOLL)
printk(" LATECOLL");
printk(" >\n");
#endif
}
} else {
DPRINTK("RPTR points us here, but packet not done?\n");
break;
}
dev_kfree_skb_irq(skb);
priv->tx_skbs[priv->tx_read] = NULL;
priv->tx_ring[priv->tx_read].header.raw = 0;
priv->tx_read = (priv->tx_read+1)&(TX_RING_ENTRIES-1);
priv->tx_count--;
}
/* wake up queue if it was stopped */
if (netif_queue_stopped(dev) && !meth_tx_full(dev)) {
netif_wake_queue(dev);
}
mace->eth.int_stat = METH_INT_TX_EMPTY | METH_INT_TX_PKT;
spin_unlock(&priv->meth_lock);
}
static void meth_error(struct net_device* dev, unsigned status)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
printk(KERN_WARNING "meth: error status: 0x%08x\n",status);
/* check for errors too... */
if (status & (METH_INT_TX_LINK_FAIL))
printk(KERN_WARNING "meth: link failure\n");
/* Should I do full reset in this case? */
if (status & (METH_INT_MEM_ERROR))
printk(KERN_WARNING "meth: memory error\n");
if (status & (METH_INT_TX_ABORT))
printk(KERN_WARNING "meth: aborted\n");
if (status & (METH_INT_RX_OVERFLOW))
printk(KERN_WARNING "meth: Rx overflow\n");
if (status & (METH_INT_RX_UNDERFLOW)) {
printk(KERN_WARNING "meth: Rx underflow\n");
spin_lock(&priv->meth_lock);
mace->eth.int_stat = METH_INT_RX_UNDERFLOW;
/* more underflow interrupts will be delivered,
* effectively throwing us into an infinite loop.
* Thus I stop processing Rx in this case. */
priv->dma_ctrl &= ~METH_DMA_RX_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
DPRINTK("Disabled meth Rx DMA temporarily\n");
spin_unlock(&priv->meth_lock);
}
mace->eth.int_stat = METH_INT_ERROR;
}
/*
* The typical interrupt entry point
*/
static irqreturn_t meth_interrupt(int irq, void *dev_id, struct pt_regs *pregs)
{
struct net_device *dev = (struct net_device *)dev_id;
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long status;
status = mace->eth.int_stat;
while (status & 0xff) {
/* First handle errors - if we get Rx underflow,
* Rx DMA will be disabled, and Rx handler will reenable
* it. I don't think it's possible to get Rx underflow,
* without getting Rx interrupt */
if (status & METH_INT_ERROR) {
meth_error(dev, status);
}
if (status & (METH_INT_TX_EMPTY | METH_INT_TX_PKT)) {
/* a transmission is over: free the skb */
meth_tx_cleanup(dev, status);
}
if (status & METH_INT_RX_THRESHOLD) {
if (!(priv->dma_ctrl & METH_DMA_RX_INT_EN))
break;
/* send it to meth_rx for handling */
meth_rx(dev, status);
}
status = mace->eth.int_stat;
}
return IRQ_HANDLED;
}
/*
* Transmits packets that fit into TX descriptor (are <=120B)
*/
static void meth_tx_short_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc = &priv->tx_ring[priv->tx_write];
int len = (skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
desc->header.raw = METH_TX_CMD_INT_EN | (len-1) | ((128-len) << 16);
/* maybe I should set whole thing to 0 first... */
memcpy(desc->data.dt + (120 - len), skb->data, skb->len);
if (skb->len < len)
memset(desc->data.dt + 120 - len + skb->len, 0, len-skb->len);
}
#define TX_CATBUF1 BIT(25)
static void meth_tx_1page_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc = &priv->tx_ring[priv->tx_write];
void *buffer_data = (void *)(((unsigned long)skb->data + 7) & ~7);
int unaligned_len = (int)((unsigned long)buffer_data - (unsigned long)skb->data);
int buffer_len = skb->len - unaligned_len;
dma_addr_t catbuf;
desc->header.raw = METH_TX_CMD_INT_EN | TX_CATBUF1 | (skb->len - 1);
/* unaligned part */
if (unaligned_len) {
memcpy(desc->data.dt + (120 - unaligned_len),
skb->data, unaligned_len);
desc->header.raw |= (128 - unaligned_len) << 16;
}
/* first page */
catbuf = dma_map_single(NULL, buffer_data, buffer_len,
DMA_TO_DEVICE);
desc->data.cat_buf[0].form.start_addr = catbuf >> 3;
desc->data.cat_buf[0].form.len = buffer_len - 1;
}
#define TX_CATBUF2 BIT(26)
static void meth_tx_2page_prepare(struct meth_private *priv,
struct sk_buff *skb)
{
tx_packet *desc = &priv->tx_ring[priv->tx_write];
void *buffer1_data = (void *)(((unsigned long)skb->data + 7) & ~7);
void *buffer2_data = (void *)PAGE_ALIGN((unsigned long)skb->data);
int unaligned_len = (int)((unsigned long)buffer1_data - (unsigned long)skb->data);
int buffer1_len = (int)((unsigned long)buffer2_data - (unsigned long)buffer1_data);
int buffer2_len = skb->len - buffer1_len - unaligned_len;
dma_addr_t catbuf1, catbuf2;
desc->header.raw = METH_TX_CMD_INT_EN | TX_CATBUF1 | TX_CATBUF2| (skb->len - 1);
/* unaligned part */
if (unaligned_len){
memcpy(desc->data.dt + (120 - unaligned_len),
skb->data, unaligned_len);
desc->header.raw |= (128 - unaligned_len) << 16;
}
/* first page */
catbuf1 = dma_map_single(NULL, buffer1_data, buffer1_len,
DMA_TO_DEVICE);
desc->data.cat_buf[0].form.start_addr = catbuf1 >> 3;
desc->data.cat_buf[0].form.len = buffer1_len - 1;
/* second page */
catbuf2 = dma_map_single(NULL, buffer2_data, buffer2_len,
DMA_TO_DEVICE);
desc->data.cat_buf[1].form.start_addr = catbuf2 >> 3;
desc->data.cat_buf[1].form.len = buffer2_len - 1;
}
static void meth_add_to_tx_ring(struct meth_private *priv, struct sk_buff *skb)
{
/* Remember the skb, so we can free it at interrupt time */
priv->tx_skbs[priv->tx_write] = skb;
if (skb->len <= 120) {
/* Whole packet fits into descriptor */
meth_tx_short_prepare(priv, skb);
} else if (PAGE_ALIGN((unsigned long)skb->data) !=
PAGE_ALIGN((unsigned long)skb->data + skb->len - 1)) {
/* Packet crosses page boundary */
meth_tx_2page_prepare(priv, skb);
} else {
/* Packet is in one page */
meth_tx_1page_prepare(priv, skb);
}
priv->tx_write = (priv->tx_write + 1) & (TX_RING_ENTRIES - 1);
mace->eth.tx_info = priv->tx_write;
priv->tx_count++;
}
/*
* Transmit a packet (called by the kernel)
*/
static int meth_tx(struct sk_buff *skb, struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long flags;
spin_lock_irqsave(&priv->meth_lock, flags);
/* Stop DMA notification */
priv->dma_ctrl &= ~(METH_DMA_TX_INT_EN);
mace->eth.dma_ctrl = priv->dma_ctrl;
meth_add_to_tx_ring(priv, skb);
dev->trans_start = jiffies; /* save the timestamp */
/* If TX ring is full, tell the upper layer to stop sending packets */
if (meth_tx_full(dev)) {
printk(KERN_DEBUG "TX full: stopping\n");
netif_stop_queue(dev);
}
/* Restart DMA notification */
priv->dma_ctrl |= METH_DMA_TX_INT_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
spin_unlock_irqrestore(&priv->meth_lock, flags);
return 0;
}
/*
* Deal with a transmit timeout.
*/
static void meth_tx_timeout(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
unsigned long flags;
printk(KERN_WARNING "%s: transmit timed out\n", dev->name);
/* Protect against concurrent rx interrupts */
spin_lock_irqsave(&priv->meth_lock,flags);
/* Try to reset the interface. */
meth_reset(dev);
priv->stats.tx_errors++;
/* Clear all rings */
meth_free_tx_ring(priv);
meth_free_rx_ring(priv);
meth_init_tx_ring(priv);
meth_init_rx_ring(priv);
/* Restart dma */
priv->dma_ctrl |= METH_DMA_TX_EN | METH_DMA_RX_EN | METH_DMA_RX_INT_EN;
mace->eth.dma_ctrl = priv->dma_ctrl;
/* Enable interrupt */
spin_unlock_irqrestore(&priv->meth_lock, flags);
dev->trans_start = jiffies;
netif_wake_queue(dev);
return;
}
/*
* Ioctl commands
*/
static int meth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
/* XXX Not yet implemented */
switch(cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
}
/*
* Return statistics to the caller
*/
static struct net_device_stats *meth_stats(struct net_device *dev)
{
struct meth_private *priv = (struct meth_private *) dev->priv;
return &priv->stats;
}
/*
* The init function.
*/
static struct net_device *meth_init(void)
{
struct net_device *dev;
struct meth_private *priv;
int ret;
dev = alloc_etherdev(sizeof(struct meth_private));
if (!dev)
return ERR_PTR(-ENOMEM);
dev->open = meth_open;
dev->stop = meth_release;
dev->hard_start_xmit = meth_tx;
dev->do_ioctl = meth_ioctl;
dev->get_stats = meth_stats;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = meth_tx_timeout;
dev->watchdog_timeo = timeout;
#endif
dev->irq = MACE_ETHERNET_IRQ;
dev->base_addr = (unsigned long)&mace->eth;
priv = (struct meth_private *) dev->priv;
spin_lock_init(&priv->meth_lock);
ret = register_netdev(dev);
if (ret) {
free_netdev(dev);
return ERR_PTR(ret);
}
printk(KERN_INFO "%s: SGI MACE Ethernet rev. %d\n",
dev->name, (unsigned int)(mace->eth.mac_ctrl >> 29));
return 0;
}
static struct net_device *meth_dev;
static int __init meth_init_module(void)
{
meth_dev = meth_init();
if (IS_ERR(meth_dev))
return PTR_ERR(meth_dev);
return 0;
}
static void __exit meth_exit_module(void)
{
unregister_netdev(meth_dev);
free_netdev(meth_dev);
}
module_init(meth_init_module);
module_exit(meth_exit_module);