Currently vgic_process_maintenance() processes dealing with a completed
level-triggered interrupt directly, but we are soon going to reuse this
logic for level-triggered mapped interrupts with the HW bit set, so
move this logic into a separate static function.
Probably the most scary part of this commit is convincing yourself that
the current flow is safe compared to the old one. In the following I
try to list the changes and why they are harmless:
Move vgic_irq_clear_queued after kvm_notify_acked_irq:
Harmless because the only potential effect of clearing the queued
flag wrt. kvm_set_irq is that vgic_update_irq_pending does not set
the pending bit on the emulated CPU interface or in the
pending_on_cpu bitmask if the function is called with level=1.
However, the point of kvm_notify_acked_irq is to call kvm_set_irq
with level=0, and we set the queued flag again in
__kvm_vgic_sync_hwstate later on if the level is stil high.
Move vgic_set_lr before kvm_notify_acked_irq:
Also, harmless because the LR are cpu-local operations and
kvm_notify_acked only affects the dist
Move vgic_dist_irq_clear_soft_pend after kvm_notify_acked_irq:
Also harmless, because now we check the level state in the
clear_soft_pend function and lower the pending bits if the level is
low.
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We currently schedule a soft timer every time we exit the guest if the
timer did not expire while running the guest. This is really not
necessary, because the only work we do in the timer work function is to
kick the vcpu.
Kicking the vcpu does two things:
(1) If the vpcu thread is on a waitqueue, make it runnable and remove it
from the waitqueue.
(2) If the vcpu is running on a different physical CPU from the one
doing the kick, it sends a reschedule IPI.
The second case cannot happen, because the soft timer is only ever
scheduled when the vcpu is not running. The first case is only relevant
when the vcpu thread is on a waitqueue, which is only the case when the
vcpu thread has called kvm_vcpu_block().
Therefore, we only need to make sure a timer is scheduled for
kvm_vcpu_block(), which we do by encapsulating all calls to
kvm_vcpu_block() with kvm_timer_{un}schedule calls.
Additionally, we only schedule a soft timer if the timer is enabled and
unmasked, since it is useless otherwise.
Note that theoretically userspace can use the SET_ONE_REG interface to
change registers that should cause the timer to fire, even if the vcpu
is blocked without a scheduled timer, but this case was not supported
before this patch and we leave it for future work for now.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Some times it is useful for architecture implementations of KVM to know
when the VCPU thread is about to block or when it comes back from
blocking (arm/arm64 needs to know this to properly implement timers, for
example).
Therefore provide a generic architecture callback function in line with
what we do elsewhere for KVM generic-arch interactions.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We currently do a single update of the vgic state when the distributor
enable/disable control register is accessed and then bypass updating the
state for as long as the distributor remains disabled.
This is incorrect, because updating the state does not consider the
distributor enable bit, and this you can end up in a situation where an
interrupt is marked as pending on the CPU interface, but not pending on
the distributor, which is an impossible state to be in, and triggers a
warning. Consider for example the following sequence of events:
1. An interrupt is marked as pending on the distributor
- the interrupt is also forwarded to the CPU interface
2. The guest turns off the distributor (it's about to do a reboot)
- we stop updating the CPU interface state from now on
3. The guest disables the pending interrupt
- we remove the pending state from the distributor, but don't touch
the CPU interface, see point 2.
Since the distributor disable bit really means that no interrupts should
be forwarded to the CPU interface, we modify the code to keep updating
the internal VGIC state, but always set the CPU interface pending bits
to zero when the distributor is disabled.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a guest reboots or offlines/onlines CPUs, it is not uncommon for it
to clear the pending and active states of an interrupt through the
emulated VGIC distributor. However, since the architected timers are
defined by the architecture to be level triggered and the guest
rightfully expects them to be that, but we emulate them as
edge-triggered, we have to mimic level-triggered behavior for an
edge-triggered virtual implementation.
We currently do not signal the VGIC when the map->active field is true,
because it indicates that the guest has already been signalled of the
interrupt as required. Normally this field is set to false when the
guest deactivates the virtual interrupt through the sync path.
We also need to catch the case where the guest deactivates the interrupt
through the emulated distributor, again allowing guests to boot even if
the original virtual timer signal hit before the guest's GIC
initialization sequence is run.
Reviewed-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We have an interesting issue when the guest disables the timer interrupt
on the VGIC, which happens when turning VCPUs off using PSCI, for
example.
The problem is that because the guest disables the virtual interrupt at
the VGIC level, we never inject interrupts to the guest and therefore
never mark the interrupt as active on the physical distributor. The
host also never takes the timer interrupt (we only use the timer device
to trigger a guest exit and everything else is done in software), so the
interrupt does not become active through normal means.
The result is that we keep entering the guest with a programmed timer
that will always fire as soon as we context switch the hardware timer
state and run the guest, preventing forward progress for the VCPU.
Since the active state on the physical distributor is really part of the
timer logic, it is the job of our virtual arch timer driver to manage
this state.
The timer->map->active boolean field indicates whether we have signalled
this interrupt to the vgic and if that interrupt is still pending or
active. As long as that is the case, the hardware doesn't have to
generate physical interrupts and therefore we mark the interrupt as
active on the physical distributor.
We also have to restore the pending state of an interrupt that was
queued to an LR but was retired from the LR for some reason, while
remaining pending in the LR.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When lowering a level-triggered line from userspace, we forgot to lower
the pending bit on the emulated CPU interface and we also did not
re-compute the pending_on_cpu bitmap for the CPU affected by the change.
Update vgic_update_irq_pending() to fix the two issues above and also
raise a warning in vgic_quue_irq_to_lr if we encounter an interrupt
pending on a CPU which is neither marked active nor pending.
[ Commit text reworked completely - Christoffer ]
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We observed some performance degradation on s390x with dynamic
halt polling. Until we can provide a proper fix, let's enable
halt_poll_ns as default only for supported architectures.
Architectures are now free to set their own halt_poll_ns
default value.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Workaround for a Cortex-A57 erratum
- Bug fix for the debugging infrastructure
- Fix for 32bit guests with more than 4GB of address space
on a 32bit host
- A number of fixes for the (unusual) case when we don't use
the in-kernel GIC emulation
- Removal of ThumbEE handling on arm64, since these have been
dropped from the architecture before anyone actually ever
built a CPU
- Remove the KVM_ARM_MAX_VCPUS limitation which has become
fairly pointless
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV+slQAAoJECPQ0LrRPXpD+WUQAMLC3ZUasJX1gsVixd++zAwB
FXu0TFlKCUsLWllXZtyhGI6ya7ljuCzfhRbA/eZFmFVbwDnULt1p5ahw7eHCIZ2a
yY93TS6XN3YHwVpY7f2lDsvLhBLyWeTdWhj5TtLy6mslQyEUqxdmsiC7gl40Fp2S
8tKIxoYYRpmbgKl/Lbi8GxdHH6c0aQ2Nt7Fq4nV9dJqy5tiGdg6OxqgU/rVmkdkv
Rv1jrdtncstNRi9NBbKRRDp5DTqWboF35HJQpdIRpR8jJTLuuzzCimP5Hz9crKuO
uXchIq2GtQB60NklZtPL15zMdmfdq+JHwdC14v05kB5Ai8NThGwKYQ3JF+krO3cG
RKsAlrIq0AwPN8hAboLcKGzjLFFryaHZsa+d7elxaaDQz1FGz4uP56fIUURoGZuX
vWTsKLRKcuPCYtnV6Frg2BCTB6nq1cRgjmMC9TABnraelZ3z0lDl4wFngg4aL2u6
QYOdP8L++/S1HAPOF7VhFYndXkbM3KoVLAepev8jvzRnwg4QVrqsvfgwFSdMNcMz
ga7bJ4pUEP+Qq1i0qc41P9O708bCGm7TIw3CzTdKIZhc/l0t137lw1rhv67JfXZh
cAni4osjhpdZUT0F9lIl/6OQB3Kgk6on3cs909Y/tT1srh9s+iVO1AwpGY1j5T4j
gFRy90o2LBuepoI/8yF3
=NNtz
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.3-rc2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
Second set of KVM/ARM changes for 4.3-rc2
- Workaround for a Cortex-A57 erratum
- Bug fix for the debugging infrastructure
- Fix for 32bit guests with more than 4GB of address space
on a 32bit host
- A number of fixes for the (unusual) case when we don't use
the in-kernel GIC emulation
- Removal of ThumbEE handling on arm64, since these have been
dropped from the architecture before anyone actually ever
built a CPU
- Remove the KVM_ARM_MAX_VCPUS limitation which has become
fairly pointless
This patch removes config option of KVM_ARM_MAX_VCPUS,
and like other ARCHs, just choose the maximum allowed
value from hardware, and follows the reasons:
1) from distribution view, the option has to be
defined as the max allowed value because it need to
meet all kinds of virtulization applications and
need to support most of SoCs;
2) using a bigger value doesn't introduce extra memory
consumption, and the help text in Kconfig isn't accurate
because kvm_vpu structure isn't allocated until request
of creating VCPU is sent from QEMU;
3) the main effect is that the field of vcpus[] in 'struct kvm'
becomes a bit bigger(sizeof(void *) per vcpu) and need more cache
lines to hold the structure, but 'struct kvm' is one generic struct,
and it has worked well on other ARCHs already in this way. Also,
the world switch frequecy is often low, for example, it is ~2000
when running kernel building load in VM from APM xgene KVM host,
so the effect is very small, and the difference can't be observed
in my test at all.
Cc: Dann Frazier <dann.frazier@canonical.com>
Signed-off-by: Ming Lei <ming.lei@canonical.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
This new statistic can help diagnosing VCPUs that, for any reason,
trigger bad behavior of halt_poll_ns autotuning.
For example, say halt_poll_ns = 480000, and wakeups are spaced exactly
like 479us, 481us, 479us, 481us. Then KVM always fails polling and wastes
10+20+40+80+160+320+480 = 1110 microseconds out of every
479+481+479+481+479+481+479 = 3359 microseconds. The VCPU then
is consuming about 30% more CPU than it would use without
polling. This would show as an abnormally high number of
attempted polling compared to the successful polls.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com<
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, if we had a zero length mmio eventfd assigned on
KVM_MMIO_BUS. It will never be found by kvm_io_bus_cmp() since it
always compares the kvm_io_range() with the length that guest
wrote. This will cause e.g for vhost, kick will be trapped by qemu
userspace instead of vhost. Fixing this by using zero length if an
iodevice is zero length.
Cc: stable@vger.kernel.org
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch factors out core eventfd assign/deassign logic and leaves
the argument checking and bus index selection to callers.
Cc: stable@vger.kernel.org
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We only want zero length mmio eventfd to be registered on
KVM_FAST_MMIO_BUS. So check this explicitly when arg->len is zero to
make sure this.
Cc: stable@vger.kernel.org
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After 'commit 0b8ba4a2b6 ("KVM: fix checkpatch.pl errors in
kvm/coalesced_mmio.h")', the declaration of the two function will exceed 80
characters.
This patch reduces the TAPs to make each line in 80 characters.
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix timer interrupt injection after the rework
that went in during the merge window
- Reset the timer to zero on reboot
- Make sure the TCR_EL2 RES1 bits are really set to 1
- Fix a PSCI affinity bug for non-existing vcpus
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJV9VQYAAoJECPQ0LrRPXpDYFsQAIp+nIxv6LijQdq310EF7Z95
1j16vx9NfsAsNH0pwiRmx4gfNOHlPp6f30Kb1HJf2TN08Rc7TS8j4Dr3zYnZEdQj
9eNGTjCjlz93VQwKnTBvBvYkHsCEWC76pOxiYoFmnLsGc4m/OilHhohOzOZTAMFC
Le07VXJwrhGHQ5bjdIMmFj+5rMj4eWfT2bYg8uVl5EUNFNkDgAMtT/Nbml90friC
x+r2I9H+G8hHmemOv6hefW7l2JScLSYpqLeGdxZUtnGy9LNP3+jTD1QyqUftUPuS
HtcB4zCtRk62nMupgFNV514Kf26wcwpS53vhd8aM2kxSkpr5xkUFoL+uJNT8ssIH
Y+FwAOeTD0osWbmxw8Gf9d3qYzPBQSCRP3E4mCbNNNsTlMRU+Hu9au0VNBKggkfF
fZ4UphCVX2C+cWaQcB40950h1F76Vx3boAfcMgiXoO+8LJx9OogDtr8+j5cBBbKU
+tMngLhelsMtSCTam9c0jS6BsQfHDy3W1CQNl30cqd2RFjvygOSAqzdCMlBk0lLG
4Sq0eib1zJM+rE2OQs8SaAftyQ0kbElmM3XZB3ZiitaHgkUKV7kt9dMUG9Vfn2SE
/ycgR9eoBq5P6FKhyROmL+0g824nYJmn4fwpecw1rHoRr8jyZjvpbE3VSL0aI5XW
w4UYsAQSTcqM6bHpNYuu
=G02h
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/ARM changes for 4.3-rc2
- Fix timer interrupt injection after the rework
that went in during the merge window
- Reset the timer to zero on reboot
- Make sure the TCR_EL2 RES1 bits are really set to 1
- Fix a PSCI affinity bug for non-existing vcpus
If there is already some polling ongoing, it's impossible to disable the
polling, since as soon as somebody sets halt_poll_ns to 0, polling will
never stop, as grow and shrink are only handled if halt_poll_ns is != 0.
This patch fix it by reset vcpu->halt_poll_ns in order to stop polling
when polling is disabled.
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Merge third patch-bomb from Andrew Morton:
- even more of the rest of MM
- lib/ updates
- checkpatch updates
- small changes to a few scruffy filesystems
- kmod fixes/cleanups
- kexec updates
- a dma-mapping cleanup series from hch
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (81 commits)
dma-mapping: consolidate dma_set_mask
dma-mapping: consolidate dma_supported
dma-mapping: cosolidate dma_mapping_error
dma-mapping: consolidate dma_{alloc,free}_noncoherent
dma-mapping: consolidate dma_{alloc,free}_{attrs,coherent}
mm: use vma_is_anonymous() in create_huge_pmd() and wp_huge_pmd()
mm: make sure all file VMAs have ->vm_ops set
mm, mpx: add "vm_flags_t vm_flags" arg to do_mmap_pgoff()
mm: mark most vm_operations_struct const
namei: fix warning while make xmldocs caused by namei.c
ipc: convert invalid scenarios to use WARN_ON
zlib_deflate/deftree: remove bi_reverse()
lib/decompress_unlzma: Do a NULL check for pointer
lib/decompressors: use real out buf size for gunzip with kernel
fs/affs: make root lookup from blkdev logical size
sysctl: fix int -> unsigned long assignments in INT_MIN case
kexec: export KERNEL_IMAGE_SIZE to vmcoreinfo
kexec: align crash_notes allocation to make it be inside one physical page
kexec: remove unnecessary test in kimage_alloc_crash_control_pages()
kexec: split kexec_load syscall from kexec core code
...
In the scope of the idle memory tracking feature, which is introduced by
the following patch, we need to clear the referenced/accessed bit not only
in primary, but also in secondary ptes. The latter is required in order
to estimate wss of KVM VMs. At the same time we want to avoid flushing
tlb, because it is quite expensive and it won't really affect the final
result.
Currently, there is no function for clearing pte young bit that would meet
our requirements, so this patch introduces one. To achieve that we have
to add a new mmu-notifier callback, clear_young, since there is no method
for testing-and-clearing a secondary pte w/o flushing tlb. The new method
is not mandatory and currently only implemented by KVM.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We were taking the exit path after checking ue->flags and return value
of setup_routing_entry(), but 'e' was not freed incase of a failure.
Signed-off-by: Sudip Mukherjee <sudip@vectorindia.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tracepoint for dynamic halt_pool_ns, fired on every potential change.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There is a downside of always-poll since poll is still happened for idle
vCPUs which can waste cpu usage. This patchset add the ability to adjust
halt_poll_ns dynamically, to grow halt_poll_ns when shot halt is detected,
and to shrink halt_poll_ns when long halt is detected.
There are two new kernel parameters for changing the halt_poll_ns:
halt_poll_ns_grow and halt_poll_ns_shrink.
no-poll always-poll dynamic-poll
-----------------------------------------------------------------------
Idle (nohz) vCPU %c0 0.15% 0.3% 0.2%
Idle (250HZ) vCPU %c0 1.1% 4.6%~14% 1.2%
TCP_RR latency 34us 27us 26.7us
"Idle (X) vCPU %c0" is the percent of time the physical cpu spent in
c0 over 60 seconds (each vCPU is pinned to a pCPU). (nohz) means the
guest was tickless. (250HZ) means the guest was ticking at 250HZ.
The big win is with ticking operating systems. Running the linux guest
with nohz=off (and HZ=250), we save 3.4%~12.8% CPUs/second and get close
to no-polling overhead levels by using the dynamic-poll. The savings
should be even higher for higher frequency ticks.
Suggested-by: David Matlack <dmatlack@google.com>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
[Simplify the patch. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change halt_poll_ns into per-VCPU variable, seeded from module parameter,
to allow greater flexibility.
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a better quality of implementation and be architecture compliant
on ARMv7 for the architected timer by resetting the CNTV_CTL to 0 on
reset of the timer.
This change alone fixes the UEFI reset issue reported by Laszlo back in
February.
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Drew Jones <drjones@redhat.com>
Cc: Wei Huang <wei@redhat.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We currently set the physical active state only when we *inject* a new
pending virtual interrupt, but this is actually not correct, because we
could have been preempted and run something else on the system that
resets the active state to clear. This causes us to run the VM with the
timer set to fire, but without setting the physical active state.
The solution is to always check the LR configurations, and we if have a
mapped interrupt in the LR in either the pending or active state
(virtual), then set the physical active state.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Highlights for KVM PPC this time around:
- Book3S: A few bug fixes
- Book3S: Allow micro-threading on POWER8
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.19 (GNU/Linux)
iQIcBAABAgAGBQJV2D6aAAoJECszeR4D/txggBMP/3nHD3UjEAFUhhA6VjfK2wNw
IW2aXQ5+2T51l1K8iSGMyKpW2w4zG5Bv9LdBP2badhaVpgM4//nVf7kcEBrdhjYq
ns7V3klzTuNY5RBbWZz3Zri0mgCkJVF1XlC3xBzGPSNKpZyrkORhlxfg5GXig8lj
pvUcku7XgkCFabAIIZmf0pg9hpDHpH3k1G9yZxuA8pys951IPRoo1CgsYmWSbmzh
jfA2CxBl10dHZOuk/ENyJveJgtthmBB4ezCbWXy+wcMzBKhMC5R93LUoiKXMLWpM
HkziNGjHA1gFSxDtfUVgkcXfan3a5JmlC+u50dLCTetXOVL7m2beIiXwv3smfjLn
AkpcChceEChxn0MxwKJjNvU+RVh3kmv8rklfPlBXHTtQ5ZSXxlcxYrmgL64stmrt
e27dzvJd9J7KX6wEpNyuZINsmFyn3lM3IoxqmSsVCRd43fzhZt9QGcYEXMIe1+lb
E7QncsYMuuWB/sfSieyPaXtmK5ym2+R220xlKezBZdzWdtisPrpCRyl7BdiqCj6O
1gROi6qEyj3m5Qw/eGbFKBF0d8oVXqo1wBJkbihMl55D+jMeZMk673aeGhno8au1
kH+Im+H5xU3oEzdqvC9y3c9kE2sRkzj43GjepIb86Y463fg6KQ5j2gbZUZolGsGH
AnRSGcbbVer/q+9kymPw
=t+9t
-----END PGP SIGNATURE-----
Merge tag 'signed-kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
Patch queue for ppc - 2015-08-22
Highlights for KVM PPC this time around:
- Book3S: A few bug fixes
- Book3S: Allow micro-threading on POWER8
In order to remove the crude hack where we sneak the masked bit
into the timer's control register, make use of the phys_irq_map
API control the active state of the interrupt.
This causes some limited changes to allow for potential error
propagation.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Virtual interrupts mapped to a HW interrupt should only be triggered
from inside the kernel. Otherwise, you could end up confusing the
kernel (and the GIC's) state machine.
Rearrange the injection path so that kvm_vgic_inject_irq is
used for non-mapped interrupts, and kvm_vgic_inject_mapped_irq is
used for mapped interrupts. The latter should only be called from
inside the kernel (timer, irqfd).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to control the active state of an interrupt, introduce
a pair of accessors allowing the state to be set/queried.
This only affects the logical state, and the HW state will only be
applied at world-switch time.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To allow a HW interrupt to be injected into a guest, we lookup the
guest virtual interrupt in the irq_phys_map list, and if we have
a match, encode both interrupts in the LR.
We also mark the interrupt as "active" at the host distributor level.
On guest EOI on the virtual interrupt, the host interrupt will be
deactivated.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In order to be able to feed physical interrupts to a guest, we need
to be able to establish the virtual-physical mapping between the two
worlds.
The mappings are kept in a set of RCU lists, indexed by virtual interrupts.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
We only set the irq_queued flag for level interrupts, meaning
that "!vgic_irq_is_queued(vcpu, irq)" is a good enough predicate
for all interrupts.
This will allow us to inject edge HW interrupts, for which the
state ACTIVE+PENDING is not allowed.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Now that struct vgic_lr supports the LR_HW bit and carries a hwirq
field, we can encode that information into the list registers.
This patch provides implementations for both GICv2 and GICv3.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
If there are no assigned devices, the guest PAT are not providing
any useful information and can be overridden to writeback; VMX
always does this because it has the "IPAT" bit in its extended
page table entries, but SVM does not have anything similar.
Hook into VFIO and legacy device assignment so that they
provide this information to KVM.
Reviewed-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
had two problems. First, the preempt-notifier API needs to sleep with the
addition of the static_key, we do however need to hold off preemption
while modifying the preempt notifier list, otherwise a preemption could
observe an inconsistent list state. KVM correctly registers and
unregisters preempt notifiers with preemption disabled, so the sleep
caused dmesg splats.
Second, KVM registers and unregisters preemption notifiers very often
(in vcpu_load/vcpu_put). With a single uniprocessor guest the static key
would move between 0 and 1 continuously, hitting the slow path on every
userspace exit.
To fix this, wrap the static_key inc/dec in a new API, and call it from
KVM.
Fixes: 1cde2930e1 ("sched/preempt: Add static_key() to preempt_notifiers")
Reported-by: Pontus Fuchs <pontus.fuchs@gmail.com>
Reported-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- CPU ops and PSCI (Power State Coordination Interface) refactoring
following the merging of the arm64 ACPI support, together with
handling of Trusted (secure) OS instances
- Using fixmap for permanent FDT mapping, removing the initial dtb
placement requirements (within 512MB from the start of the kernel
image). This required moving the FDT self reservation out of the
memreserve processing
- Idmap (1:1 mapping used for MMU on/off) handling clean-up
- Removing flush_cache_all() - not safe on ARM unless the MMU is off.
Last stages of CPU power down/up are handled by firmware already
- "Alternatives" (run-time code patching) refactoring and support for
immediate branch patching, GICv3 CPU interface access
- User faults handling clean-up
And some fixes:
- Fix for VDSO building with broken ELF toolchains
- Fixing another case of init_mm.pgd usage for user mappings (during
ASID roll-over broadcasting)
- Fix for FPSIMD reloading after CPU hotplug
- Fix for missing syscall trace exit
- Workaround for .inst asm bug
- Compat fix for switching the user tls tpidr_el0 register
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVitZgAAoJEGvWsS0AyF7x+ToP/0Yci5bNsYVwVay8N1rK6WHh
SGzDMzyxcSBjQpz2IhhTJ28eTAEH+a+HWQms+0tBehjqxqkvjuzBN0okDkc/z8NB
7Z0BV2aLkQcMwTbjgIh5jm25ZpGmvmvbWPD5oBwgmgQ4v4i1OLRKgx7+YQ+z9rWZ
zC70d0UwyWjs2oxmjd2ZrAkps7v/qozEFhcRHxLzCn8Mbw+3FcTQsqMbfnoWGnH0
YuGfHQQqBY4/HC7uAslMCy7tXeJXqb+NsgrnAovjfEbHGDjsg0KNl06K++LHwE37
A5Noa3M0AQEPYqx/sg0Ec8RNUUEMB4RA2DCaibp7XlVGncXOwFfiyk/M5uVrYXIO
ku5QF0ytUfZKzrMq3yQKbEDuCPOFTqjjdVpkeXKFdW66zYTohKVc3vUBV5xHZ5uO
7Kr8H0ZnhAv3OxPyKdEwAuQ5sJdWwQSvZyGClxMUO4eC/UzD0Mwwf1Y8WYtiAXx+
NSTeBKw/m33W3/KhNuNH1+qGEOKhuXuKX7AcYA84Rab8ytxYWcurHCG2bmhzpEse
2DZtNMybrP/HMQPyJlYgGac8B3QbsAIAkkU1f+dJTAv9otuBDhscaDQyZ9Y6WVht
/k8zJiZeMEuGAmwgTkzLmWs/8pQq42nW4J4eQdXPZAwp4ghCIypPWfaZASAwee6/
p+es3v8P4k9wkv2TFZMh
=YeGl
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Mostly refactoring/clean-up:
- CPU ops and PSCI (Power State Coordination Interface) refactoring
following the merging of the arm64 ACPI support, together with
handling of Trusted (secure) OS instances
- Using fixmap for permanent FDT mapping, removing the initial dtb
placement requirements (within 512MB from the start of the kernel
image). This required moving the FDT self reservation out of the
memreserve processing
- Idmap (1:1 mapping used for MMU on/off) handling clean-up
- Removing flush_cache_all() - not safe on ARM unless the MMU is off.
Last stages of CPU power down/up are handled by firmware already
- "Alternatives" (run-time code patching) refactoring and support for
immediate branch patching, GICv3 CPU interface access
- User faults handling clean-up
And some fixes:
- Fix for VDSO building with broken ELF toolchains
- Fix another case of init_mm.pgd usage for user mappings (during
ASID roll-over broadcasting)
- Fix for FPSIMD reloading after CPU hotplug
- Fix for missing syscall trace exit
- Workaround for .inst asm bug
- Compat fix for switching the user tls tpidr_el0 register"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (42 commits)
arm64: use private ratelimit state along with show_unhandled_signals
arm64: show unhandled SP/PC alignment faults
arm64: vdso: work-around broken ELF toolchains in Makefile
arm64: kernel: rename __cpu_suspend to keep it aligned with arm
arm64: compat: print compat_sp instead of sp
arm64: mm: Fix freeing of the wrong memmap entries with !SPARSEMEM_VMEMMAP
arm64: entry: fix context tracking for el0_sp_pc
arm64: defconfig: enable memtest
arm64: mm: remove reference to tlb.S from comment block
arm64: Do not attempt to use init_mm in reset_context()
arm64: KVM: Switch vgic save/restore to alternative_insn
arm64: alternative: Introduce feature for GICv3 CPU interface
arm64: psci: fix !CONFIG_HOTPLUG_CPU build warning
arm64: fix bug for reloading FPSIMD state after CPU hotplug.
arm64: kernel thread don't need to save fpsimd context.
arm64: fix missing syscall trace exit
arm64: alternative: Work around .inst assembler bugs
arm64: alternative: Merge alternative-asm.h into alternative.h
arm64: alternative: Allow immediate branch as alternative instruction
arm64: Rework alternate sequence for ARM erratum 845719
...
The allocation size of the kvm_irq_routing_table depends on
the number of irq routing entries because they are all
allocated with one kzalloc call.
When the irq routing table gets bigger this requires high
order allocations which fail from time to time:
qemu-kvm: page allocation failure: order:4, mode:0xd0
This patch fixes this issue by breaking up the allocation of
the table and its entries into individual kzalloc calls.
These could all be satisfied with order-0 allocations, which
are less likely to fail.
The downside of this change is the lower performance, because
of more calls to kzalloc. But given how often kvm_set_irq_routing
is called in the lifetime of a guest, it doesn't really
matter much.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
[Avoid sparse warning through rcu_access_pointer. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Back in the days, vgic.c used to have an intimate knowledge of
the actual GICv2. These days, this has been abstracted away into
hardware-specific backends.
Remove the now useless arm-gic.h #include directive, making it
clear that GICv2 specific code doesn't belong here.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit fd1d0ddf2a (KVM: arm/arm64: check IRQ number on userland
injection) rightly limited the range of interrupts userspace can
inject in a guest, but failed to consider the (unlikely) case where
a guest is configured with 1024 interrupts.
In this case, interrupts ranging from 1020 to 1023 are unuseable,
as they have a special meaning for the GIC CPU interface.
Make sure that these number cannot be used as an IRQ. Also delete
a redundant (and similarily buggy) check in kvm_set_irq.
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: <stable@vger.kernel.org> # 4.1, 4.0, 3.19, 3.18
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
If a GICv3-enabled guest tries to configure Group0, we print a
warning on the console (because we don't support Group0 interrupts).
This is fairly pointless, and would allow a guest to spam the
console. Let's just drop the warning.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
So far, we configured the world-switch by having a small array
of pointers to the save and restore functions, depending on the
GIC used on the platform.
Loading these values each time is a bit silly (they never change),
and it makes sense to rely on the instruction patching instead.
This leads to a nice cleanup of the code.
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 47a98b15ba ("arm/arm64: KVM: support for un-queuing active
IRQs") introduced handling of the GICD_I[SC]ACTIVER registers,
but only for the GICv2 emulation. For the sake of completeness and
as this is a pre-requisite for save/restore of the GICv3 distributor
state, we should also emulate their handling in the distributor and
redistributor frames of an emulated GICv3.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Only two ioctls have to be modified; the address space id is
placed in the higher 16 bits of their slot id argument.
As of this patch, no architecture defines more than one
address space; x86 will be the first.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We need to hide SMRAM from guests not running in SMM. Therefore, all
uses of kvm_read_guest* and kvm_write_guest* must be changed to use
different address spaces, depending on whether the VCPU is in system
management mode. We need to introduce a new family of functions for
this purpose.
For now, the VCPU-based functions have the same behavior as the
existing per-VM ones, they just accept a different type for the
first argument. Later however they will be changed to use one of many
"struct kvm_memslots" stored in struct kvm, through an architecture hook.
VM-based functions will unconditionally use the first memslots pointer.
Whenever possible, this patch introduces slot-based functions with an
__ prefix, with two wrappers for generic and vcpu-based actions.
The exceptions are kvm_read_guest and kvm_write_guest, which are copied
into the new functions kvm_vcpu_read_guest and kvm_vcpu_write_guest.
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>